P-Channel Enhancement Mode MOSFET

Features

- Surface-mounted package
- Low Gate-Source Threshold Voltage
- Halogen and Antimony Free(HAF), RoHS compliant

1.Gate 2.Drain 3.Source

Key Parameters

Parameter	Value	Unit
$-B V_{D S S}$	100	V
$\mathrm{R}_{\mathrm{DS}(\text { ON })} \operatorname{Max}$	$700 @-\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	$\mathrm{~m} \Omega$
	$720 @-\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}$	
$-\mathrm{V}_{\mathrm{GS}(\text { th }) \text { typ }}$	1.8	V
Q_{g} typ	$6.8 @-\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	nC

Absolute Maximum Ratings (at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-Source Voltage	-VDS	100	V
Gate-Source Voltage	$V_{G S}$	± 20	V
$\begin{array}{ll}\text { Drain Current } & \mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C} \\ & \mathrm{T}_{\mathrm{c}}=100^{\circ} \mathrm{C}\end{array}$	-ID	$\begin{gathered} 3.2 \\ 2 \end{gathered}$	A
Peak Drain Current, Pulsed ${ }^{1)}$	-IDM	9	A
Single-Pulse Avalanche Current	$-l_{\text {AS }}$	2.1	A
Single-Pulse Avalanche Energy ${ }^{2}$	$\mathrm{EAS}^{\text {S }}$	1.1	mJ
Power Dissipation $\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	PD	16.2	W
Operating Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Case	R өлс	7.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance from Junction to Ambient ${ }^{3)}$	R $_{\text {өJA }}$	42	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1)}$ Pulse Test: Pulse Width $\leq 100 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$, Repetitive rating, pulse width limited by junction temperature $\mathrm{T}_{\mathrm{J} \text { (MAX) }}=150^{\circ} \mathrm{C}$.
${ }^{2}$) Limited by $T_{J(M A X)}$, starting $T_{J}=25^{\circ} \mathrm{C}, \mathrm{L}=0.5 \mathrm{mH}, R_{\mathrm{g}}=25 \Omega,-I_{\mathrm{D}}=2.1 \mathrm{~A},-\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$.
${ }^{3)}$ Device mounted on FR-4 substrate PC board, $20 z$ copper, with 1 -inch square copper plate in still air.

Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min.	Typ.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at $-I_{D}=250 \mu \mathrm{~A}$	-BV ${ }_{\text {Dss }}$	100	-	-	V
Drain-Source Leakage Current at $-V_{D S}=100 \mathrm{~V}$	-ldss	-	-	1	$\mu \mathrm{A}$
Gate Leakage Current at $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$	Igss	-	-	± 100	nA
Gate-Source Threshold Voltage at $V_{D S}=V_{G S},-I_{D}=250 \mu \mathrm{~A}$	-VGS(th)	1.2	-	2.5	V
Drain-Source On-State Resistance at $-V_{G S}=10 \mathrm{~V},-I_{D}=3 \mathrm{~A}$ at $-V_{G S}=4.5 \mathrm{~V},-I_{D}=2 \mathrm{~A}$	R ${ }_{\text {DS(on) }}$	-	640	$\begin{aligned} & 700 \\ & 720 \\ & \hline \end{aligned}$	$\mathrm{m} \Omega$
DYNAMIC PARAMETERS					
Forward Transconductance at $-V_{D S}=5 \mathrm{~V},-I_{D}=2 \mathrm{~A}$	grs	-	4	-	S
Gate Resistance at $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Rg_{g}	-	9	-	Ω
Input Capacitance at $-V_{D S}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {iss }}$	-	388	-	pF
Output Capacitance at $-\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Coss	-	18	-	pF
Reverse Transfer Capacitance at $-\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Crss	-	13	-	pF
Total Gate Charge at $-V_{G S}=10 \mathrm{~V},-V_{D S}=50 \mathrm{~V},-I D=3 \mathrm{~A}$ at $-V_{G S}=4.5 \mathrm{~V},-\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V},-\mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}$	Q_{g}	-	$\begin{gathered} 6.8 \\ 3 \\ \hline \end{gathered}$		nC
Gate-Source Charge $\text { at }-V_{G S}=10 \mathrm{~V},-\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V},-\mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}$	Qgs	-	1.7	-	nC
Gate-Drain Charge at $-\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V},-\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V},-\mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}$	Qgd	-	0.9	-	nC
Turn-On Delay Time at $-\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V},-\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V},-\mathrm{ID}_{\mathrm{D}}=3 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=3.3 \Omega$	$\mathrm{t}_{\text {d}(0 n) ~}^{\text {a }}$	-	6	-	ns
Turn-On Rise Time at $-\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V},-\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V},-\mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=3.3 \Omega$	tr	-	2.8	-	ns
Turn-Off Delay Time at $-\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V},-\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V},-\mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=3.3 \Omega$	$\mathrm{t}_{\text {(} \text { (off) }}$	-	7.5	-	ns
Turn-Off Fall Time at $-\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V},-\mathrm{V}$ DS $=50 \mathrm{~V},-\mathrm{ID}=3 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=3.3 \Omega$	t_{f}	-	7	-	ns
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage $\text { at }-\mathrm{I}_{\mathrm{S}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	- $\mathrm{V}_{\text {SD }}$	-	-	1.2	V
Body-Diode Continuous Current	-ls	-	-	3.2	A
Body-Diode Continuous Current, Pulsed	-ISM	-	-	9	A
Body Diode Reverse Recovery Time at $-\mathrm{ls}=3 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	$t_{\text {rr }}$	-	19.7	-	ns
Body Diode Reverse Recovery Charge at $-\mathrm{I}_{\mathrm{S}}=3 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	Qrr	-	18.2	-	nC

®

Electrical Characteristics Curves

Fig. 1 Typical Output Characteristics

Fig. 3 on-Resistance vs. Drain Current

Fig. 5 on-Resistance vs. T_{j}

Fig. 2 Typical Transfer Characteristics

Fig. 4 on-Resistance vs. Gate Voltage

Fig. 6 Typical Body-Diode Forward Characteristics

Electrical Characteristics Curves

Fig. 7 Typical Junction Capacitance

Fig. $9 \mathrm{~V}_{\text {(BR) Dss }}$ vs. Junction Temperature

Fig. 11 Gate Charge

Fig. 8 Drain-Source Leakage Current vs. T_{j}

Fig. 10 Gate Threshold Variation vs. T_{j}

Fig. 12 Safe Operation Area

WTR10P6K2LS-HAF

Electrical Characteristics Curves

Fig. 13 Normalized Maximum Transient Thermal Impedance(Zөлc)

Fig. 14 Normalized Maximum Transient Thermal Impedance(ZөJA)

Test Circuits

Fig.3-1 Avalanche test circuit

Package Outline (Dimensions in mm)

UNIT	A	B	C	D	E	F	G	W	H	H1	Q	L	P	P1	P2
mm	5.5	1.20	0.65	6.2	$\begin{gathered} 0.8 \\ \text { MIN } \end{gathered}$	1.0	$\begin{gathered} 2.3 \\ \text { TYP } \end{gathered}$	6.7	2.5	0.65	$\begin{array}{r} 60^{\circ} \\ \text { TYP } \end{array}$	10.7	5.4	5.0	3.4
	4.9	0.85	0.4	5.6		0.5		6.1	2.1	0.4		9	5.0	4.6	2.9

Recommended Soldering Footprint

Packing information

Package	Tape Width (mm)	Pitch		Reel Size		Per Reel Packing Quantity
		mm	inch	mm	inch	
TO-252	12	8 ± 0.1	0.315 ± 0.004	330	13	2,500

Marking information

" TR10P6K2LS " = Part No.
" ****** " = Date Code Marking
Font type: Arial

IMPORTANT NOTICE

Our company and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability without further notice to this document and any product described herein.

Statements described herein regarding the reliability and suitability of products is for illustrative purposes only. Products specifically described herein are not authorized for use as critical components in life support devices, automobile, military, aviation or aerospace only with the written approval of our company.

The information contained herein is presented only as guidance for product use. No license to any intellectual property rights is granted under this document. No responsibility is assumed by our company for any infringement of patents or any other intellectual property rights of third party that may result from the use of the product.

