P-Channel Enhancement Mode MOSFET

Features

- Low RDS(ON)
- Low Input Capacitance
- Low Switching Charge
- Halogen and Antimony Free(-HAF), RoHS compliant

Application

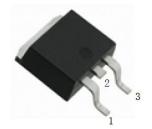
- Motor/Body Load Control
- Automotive Systems
- Load Switch
- DC-DC converters and Off-line UPS

Key Parameters

Parameter	Value	Unit		
-BV _{DSS}	40	V		
Rds(on) Max	15 @ -V _{GS} = 10 V	mΩ		
	20 @ -V _{GS} = 4.5 V	11122		
-V _{GS(th)} typ	1.7	V		
Q _g typ	55 @ -V _{GS} = 10 V	nC		

Absolute Maximum Ratings (at T_a = 25°C unless otherwise specified)

•	• •			
Parameter	Symbol	Value	Unit	
Drain-Source Voltage	-V _{DS}	40	V	
Gate-Source Voltage	-V _{GS}	± 20	V	
Continuous Drain Current $T_c = 25^{\circ}C$ $T_c = 100^{\circ}C$	-I _D	43.7 27.5	А	
Peak Drain Current, Pulsed ¹⁾	-I _{DM}	150	А	
Avalanche Current	-las	37.8	A	
Single Pulse Avalanche Energy ²⁾	E _{AS}	71.4	mJ	
Power Dissipation $T_c = 25^{\circ}C$	PD	37.4	W	
Operating Junction and Storage Temperature Range	T _J , T _{stg}	- 55 to + 150	°C	


Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Case	Rejc	3.3	°C/W
Thermal Resistance from Junction to Ambient ³⁾	Reja	35	°C/W

¹⁾ Pulse Test: Pulse Width \leq 100 µs, Duty Cycle \leq 2%, Repetitive rating, pulse width limited by junction temperature T_{J(MAX)} = 150°C.

 $^{2)}$ Limited by $T_{J(MAX)},$ starting T_{J} = 25 °C, L = 0.1 mH, R_{g} = 25 $\Omega,$ -I_{D} = 37.8 A, -V_{GS} = 10 V.

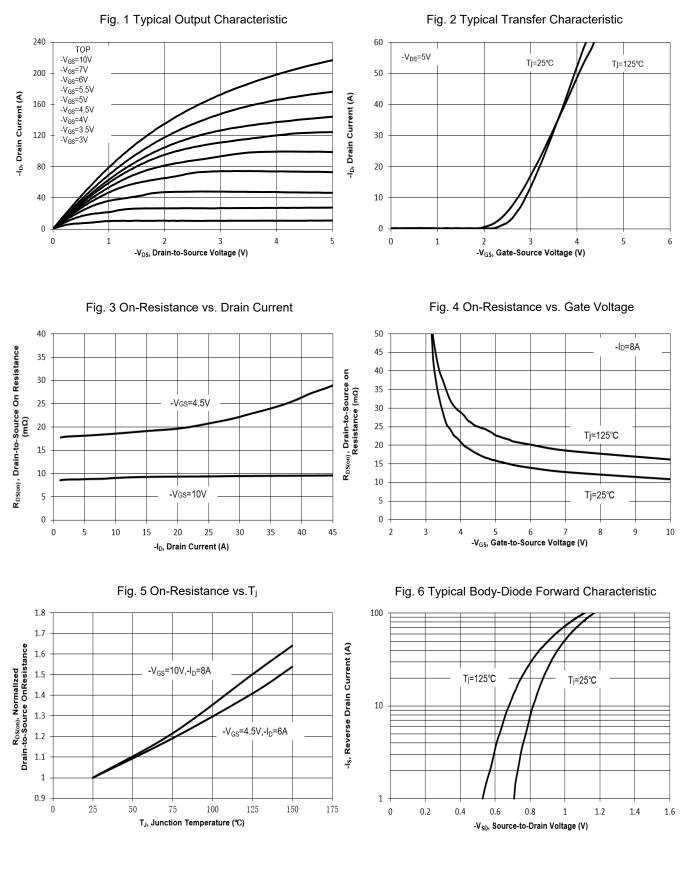
³⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.

Drain

Source

Gate

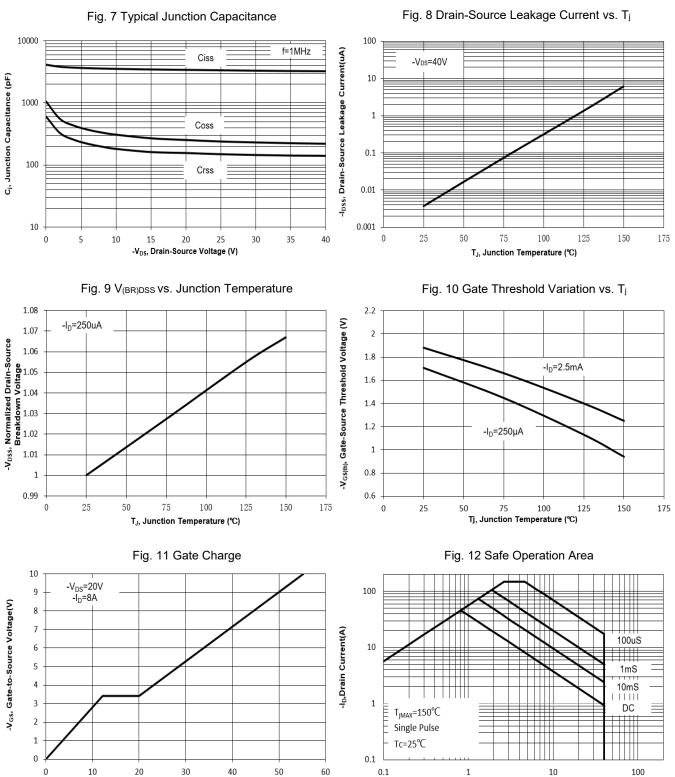
1.Gate 2.Drain 3.Source TO-252 Plastic Package


Characteristics at T_a = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at -I _D = 250 μA	-BV _{DSS}	40	-	-	V
Drain-Source Leakage Current at -V _{DS} = 32 V	-I _{DSS}	-	-	1	μA
Gate Leakage Current at V_{GS} = ± 20 V	Igss	-	-	± 100	nA
Gate-Source Threshold Voltage at V_{DS} = V_{GS} , $-I_D$ = 250 μ A	-VGS(th)	1	-	2.5	V
Drain-Source On-State Resistance at -V _{GS} = 10 V, -I _D = 8 A at -V _{GS} = 4.5 V, -I _D = 6 A	$R_{DS(on)}$	-	11 -	15 20	mΩ
DYNAMIC PARAMETERS					
Forward Transconductance at $-V_{DS} = 5 V$, $-I_D = 8 A$	g Fs	-	18.4	-	S
Gate resistance at $V_{DS} = 0 V$, f = 1 MHz	Rg	-	3.1	-	Ω
Input Capacitance at $-V_{DS} = 20 V$, $V_{GS} = 0 V$, f = 1 MHz	Ciss	-	3425	-	pF
Output Capacitance at $-V_{DS} = 20 V$, $V_{GS} = 0 V$, f = 1 MHz	Coss	-	253	-	pF
Reverse Transfer Capacitance at $-V_{DS}$ = 20 V, V_{GS} = 0 V, f = 1 MHz	Crss	-	155	-	pF
Total Gate Charge at $-V_{DS} = 20 V$, $-V_{GS} = 10 V$, $-I_D = 8 A$ at $-V_{DS} = 20 V$, $-V_{GS} = 4.5 V$, $-I_D = 8 A$	Qg	-	55 25	-	nC
Gate-Source Charge at $-V_{DS} = 20 V$, $-V_{GS} = 10 V$, $-I_D = 8 A$	Qgs	-	12	-	nC
Gate-Drain Charge at $-V_{DS} = 20 V$, $-V_{GS} = 10 V$, $-I_D = 8 A$	Q_{gd}	-	7	-	nC
Turn-On Delay Time at -V _{DD} = 20 V, -V _{GS} = 10 V, -I _D = 8 A, R _G = 3.3 Ω	t _{d(on)}	-	21	-	nS
Turn-On Rise Time at -V _{DD} = 20 V, -V _{GS} = 10 V, -I _D = 8 A, R _G = 3.3 Ω	tr	-	20	-	nS
Turn-Off Delay Time at -V _{DD} = 20 V, -V _{GS} = 10 V, -I _D = 8 A, R _G = 3.3 Ω	t _{d(off)}	-	26	-	nS
Turn-Off Fall Time at -V _{DD} = 20 V, -V _{GS} = 10 V, -I _D = 8 A, R _G = 3.3Ω	t _f	-	14	-	nS
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at $-I_S = 8 A$, $V_{GS} = 0 V$	-V _{SD}	-	-	1.2	V
Body-Diode Continuous Current	-ls	-	-	43.7	Α
Body-Diode Continuous Current, Pulsed	-Ism	-	-	150	А
Body Diode Reverse Recovery Time at $-I_s = 8 A$, di/dt = 100 A / μs	t _{rr}	-	15	-	nS
Body Diode Reverse Recovery Charge at $-I_s = 8 A$, di/dt = 100 A / μs	Qrr	-	8	-	nC

WTR04P150L-HAF

Electrical Characteristics Curves



Dated: 01/04/2021 Rev: 01

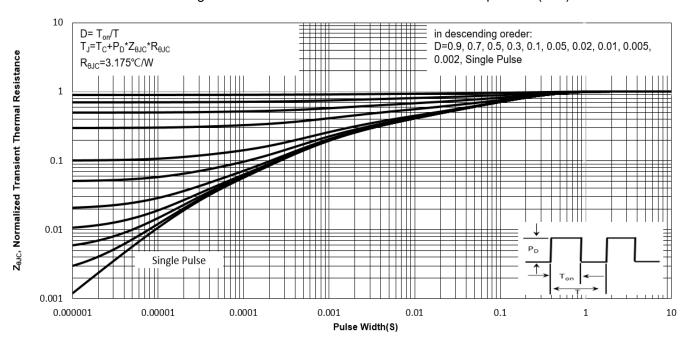
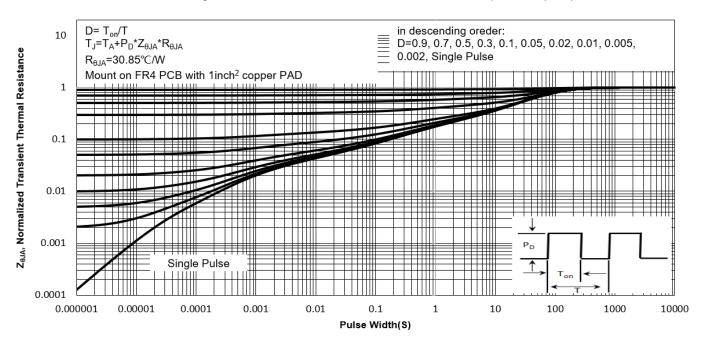
WTR04P150L-HAF

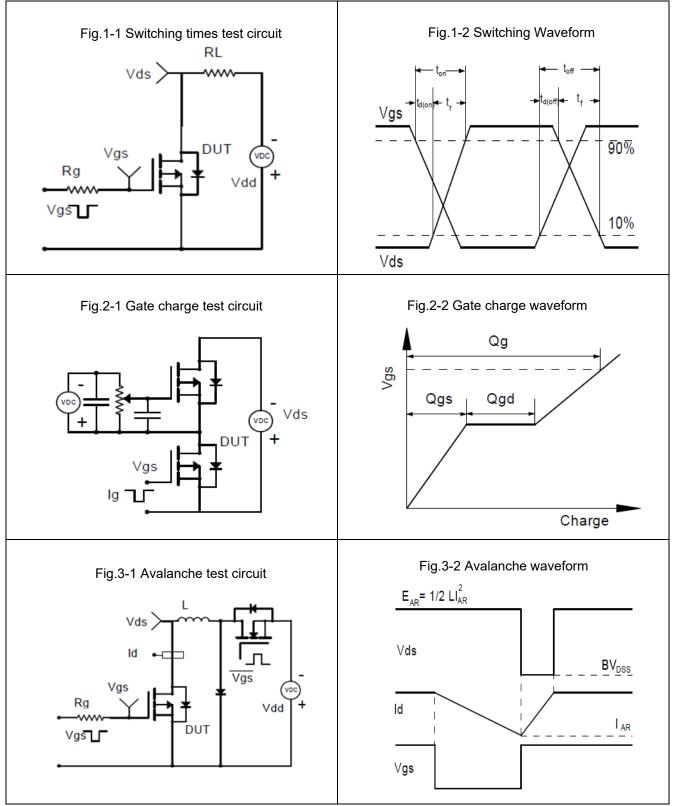
Electrical Characteristics Curves

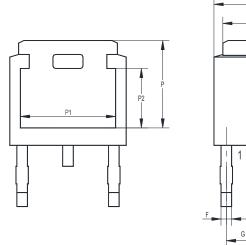
-V_{DS}, Drain to Source Voltage(V)

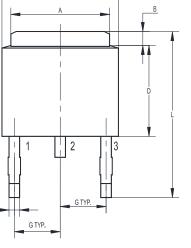
Q_g, Total Gate Charge(nC)

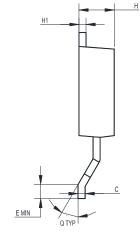
Electrical Characteristics Curves

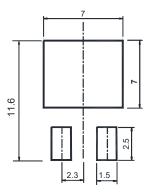

Fig.14 Normalized Maximum Transient Thermal Impedance(z_{BJC})


WTR04P150L-HAF


Test Circuits



Package Outline (Dimensions in mm)



UNIT	Α	В	С	D	E	F	G	W	Н	H1	Q	L	Р	P1	P2
	5.5	1.20	0.65	6.2	0.8	1.0	2.3	6.7	2.5	0.65	60°	10.7	5.4	5.0	3.4
mm	4.9	0.85	0.4	5.6	MIN	0.5	TYP	6.1	2.1	0.4	TYP	9	5.0	4.6	2.9

Recommended Soldering Footprint

Packing information

Package	Tape Width		tch	Reel	Size	Par Pool Pool/ing Quantity	
гаскауе	(mm)	mm	inch	mm	inch	Per Reel Packing Quantity	
TO-252	12	8 ± 0.1	0.315 ± 0.004	330	13	2,500	

7/8

Marking information

" TR04P150L " = Part No.

" ****** " = Date Code Marking

Font type: Arial

IMPORTANT NOTICE

Our company and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability without further notice to this document and any product described herein.

Statements described herein regarding the reliability and suitability of products is for illustrative purposes only. Products specifically described herein are not authorized for use as critical components in life support devices, automobile, military, aviation or aerospace only with the written approval of our company.

The information contained herein is presented only as guidance for product use. No license to any intellectual property rights is granted under this document. No responsibility is assumed by our company for any infringement of patents or any other intellectual property rights of third party that may result from the use of the product.

