
P-Channel Enhancement Mode MOSFET

Features

- Low On-Resistance
- Surface-mounted package
- Low Gate-Source Threshold Voltage
- Halogen and Antimony Free(HAF), RoHS compliant

1.Gate 2.Drain 3.Source TO-252 Plastic Package

Key Parameters

Parameter	Value	Unit		
-BV _{DSS}	40	V		
De com Max	7.3 @ -V _{GS} = 10 V			
R _{DS(ON)} Max	10.5 @ -V _{GS} = 4.5 V	mΩ		
-V _{GS(th)} typ	1.5	V		
Q _g typ	125 @ -V _{GS} = 10 V	nC		

Absolute Maximum Ratings (at T_a = 25°C unless otherwise specified)

Parameter		Symbol	Value	Unit
Drain-Source Voltage		-V _{DS}	40	V
Gate-Source Voltage		V _{GS}	± 20	V
Drain Current	T _c = 25°C T _c = 100°C	-I _D	71 44	А
Peak Drain Current, Pulsed 1)		-I _{DM}	300	А
Single-Pulse Avalanche Current	-las	45	A	
Single-Pulse Avalanche Energy 2)		E _{AS}	101	mJ
Power Dissipation	T _c = 25°C	PD	65.2	W
Operating Junction and Storage Tempera	TJ, Tstg	- 55 to + 175	°C	

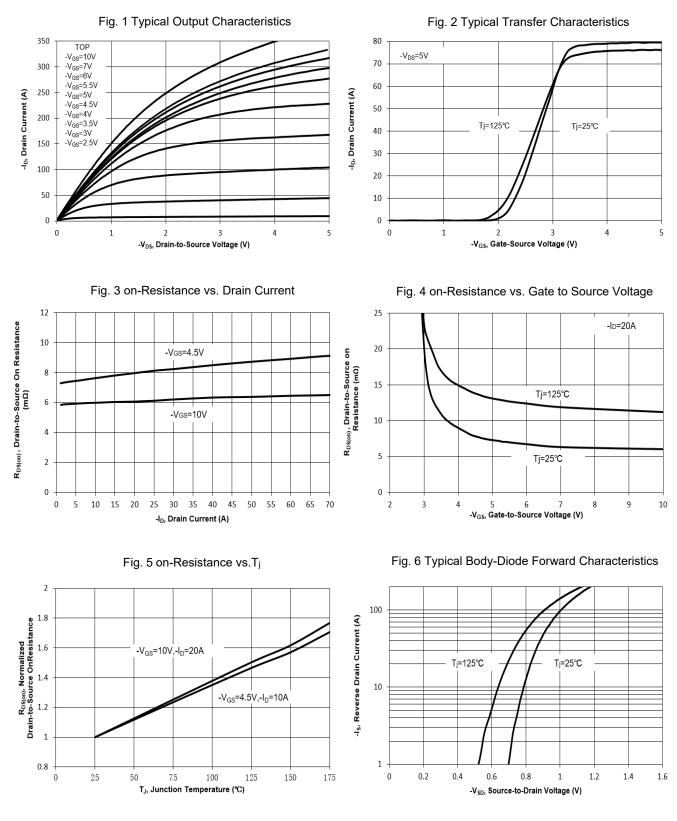
Thermal Characteristics

Inernial Characteristics			
Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Case	R _{θJC}	2.3	°C/W
Thermal Resistance from Junction to Ambient ³⁾	Reja	35	°C/W

¹⁾ Pulse Test: Pulse Width \leq 100 µs, Duty Cycle \leq 2%, Repetitive rating, pulse width limited by junction temperature T_{J(MAX)} = 175°C.

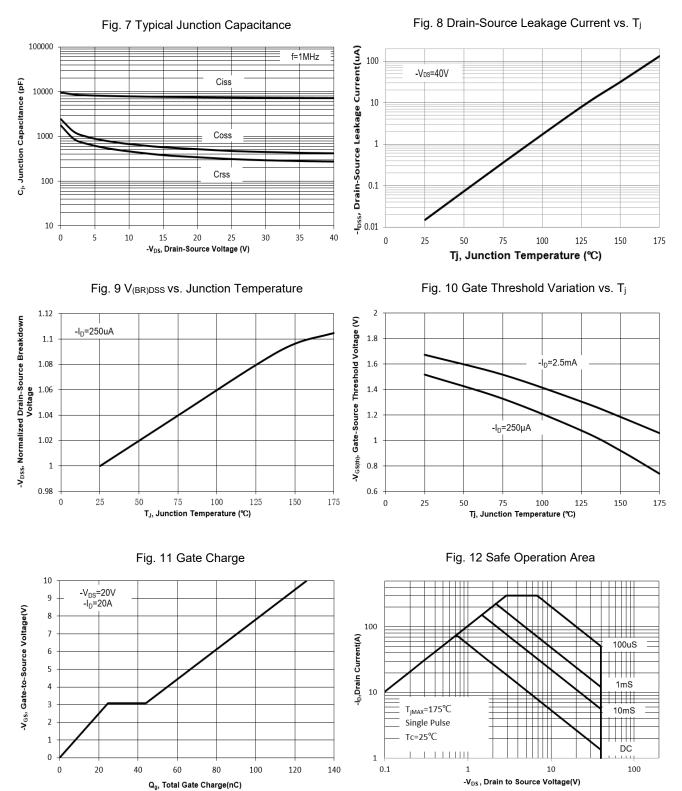
 $^{2)}$ Limited by $T_{J(MAX)}\text{, starting }T_{J}$ = 25°C, L = 0.1 mH, Rg = 25 $\Omega\text{, -I}_{AS}$ = 45 A, V_{GS} = 10 V.

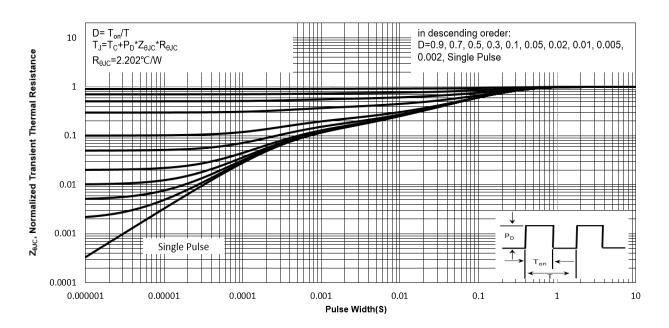
³⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.


WTR04P065LS-HAF

Characteristics at Ta = 25°C unless otherwise specified

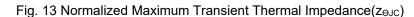
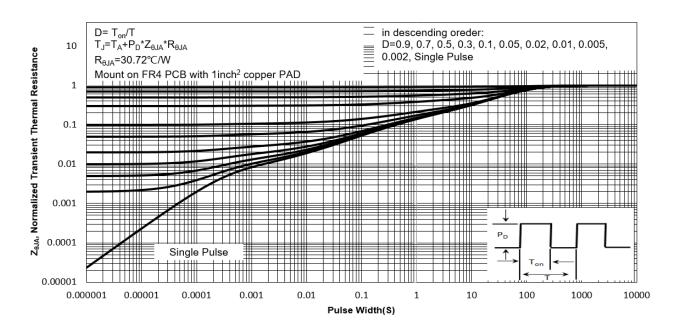
Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at -I _D = 250 μA	-BV _{DSS}	40	-	-	V
Drain-Source Leakage Current at -V _{DS} = 40 V	-I _{DSS}	-	-	1	μA
Gate Leakage Current at V _{GS} = ± 20 V	Igss	-	-	± 100	nA
Gate-Source Threshold Voltage at V_{DS} = V_{GS} , $-I_D$ = 250 μ A	-V _{GS(th)}	1.0	-	2.5	V
Drain-Source On-State Resistance at $-V_{GS} = 10 \text{ V}, -I_D = 20 \text{ A}$ at $-V_{GS} = 4.5 \text{ V}, -I_D = 10 \text{ A}$	R _{DS(on)}	-	6	7.3 10.5	mΩ
DYNAMIC PARAMETERS					
Forward Transconductance at $-V_{DS} = 5 V$, $-I_D = 10 A$	gfs	-	40.6	-	S
Gate Resistance at $V_{GS} = 0 V$, $V_{DS} = 0 V$, f = 1 MHz	Rg	-	1.6	-	Ω
Input Capacitance at -V _{DS} = 20 V, V _{GS} = 0 V, f = 1 MHz	Ciss	-	7560	-	pF
Output Capacitance at $-V_{DS} = 20 V$, $V_{GS} = 0 V$, f = 1 MHz	Coss	-	521	-	pF
Reverse Transfer Capacitance at -V _{DS} = 20 V, V _{GS} = 0 V, f = 1 MHz	Crss	-	344	-	pF
Total Gate Charge at -V _{DS} = 20 V, -V _{GS} = 10 V, -I _D = 20 A at -V _{DS} = 20 V, -V _{GS} = 4.5 V, -I _D = 20 A	Qg	-	125 59	-	nC
Gate-Source Charge at $-V_{DS} = 20 V$, $-V_{GS} = 10 V$, $-I_D = 20 A$	Qgs	-	24	-	nC
Gate-Drain Charge at $-V_{DS} = 20 \text{ V}, -V_{GS} = 10 \text{ V}, -I_D = 20 \text{ A}$	Q_{gd}	-	19	-	nC
Turn-On Delay Time at -V _{DD} = 20 V, -V _{GS} = 10 V, -I _D = 20 A, R _G = 3.3 Ω	t _{d(on)}	-	37	-	ns
Turn-On Rise Time at -V _{DD} = 20 V, -V _{GS} = 10 V, -I _D = 20 A, R _G = 3.3 Ω	tr	-	48	-	ns
Turn-Off Delay Time at -V _{DD} = 20 V, -V _{GS} = 10 V, -I _D = 20 A, R _G = 3.3 Ω	$t_{d(\text{off})}$	-	43	-	ns
Turn-Off Fall Time at -V _{DD} = 20 V, -V _{GS} = 10 V, -I _D = 20 A, R _G = 3.3 Ω	t _f	-	9	-	ns
Body-Diode PARAMETERS				•	
Drain-Source Diode Forward Voltage at $-I_s = 1 A$, $V_{GS} = 0 V$	-V _{SD}	-	-	1.2	V
Body-Diode Continuous Current	-ls	-	-	71	Α
Body-Diode Continuous Current, Pulsed	-I _{SM}	-	-	300	А
Body Diode Reverse Recovery Time at $-I_s = 20 \text{ A}$, di/dt = 100 A / μs	t _{rr}	-	21	-	ns
Body Diode Reverse Recovery Charge at -I _s = 20 A, di/dt = 100 A / μs	Qrr	-	16	-	nC

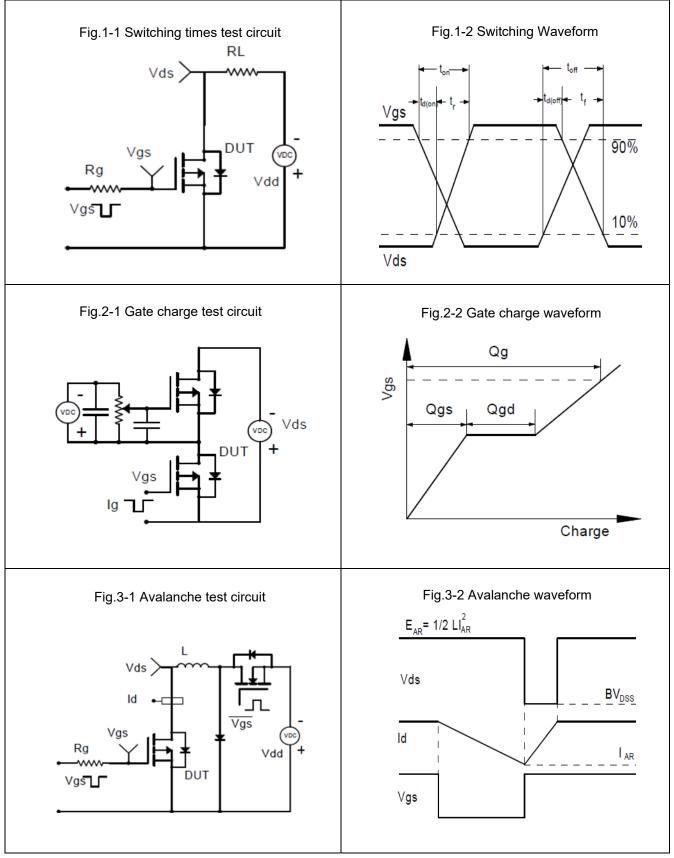

Electrical Characteristics Curves

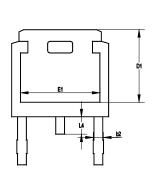

3/7

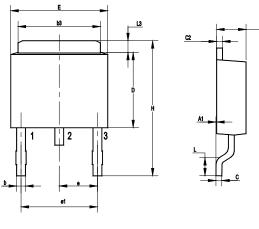
Electrical Characteristics Curves

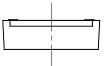
Electrical Characteristics Curves

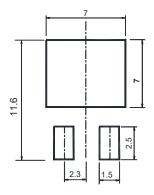

Fig. 14 Normalized Maximum Transient Thermal Impedance(z_{OJA})


WTR04P065LS-HAF


Test Circuits



Package Outline (Dimensions in mm)



UNIT	А	A1	b	b2	b3	С	C2	D	D1	Е	E1	е	e1	Н	L	L3	L4
	2.5	0.15	1.0	1.15	5.5	0.65	0.65	6.2	5.4	6.7	5.0	2.30	4.60	10.7	1.78	1.20	1.10
mm	2.1	0	0.5	0.65	4.9	0.4	0.4	5.6	5.0	6.1	4.6	TYP.	TYP.	9	1.40	0.85	0.51

Recommended Soldering Footprint

Packing information

Package	Tape Width	Pit	ch	Reel	Size	Per Reel Packing Quantity	
Fackage	(mm)	mm	inch mm inch		inch	Per Reel Packing Quantity	
TO-252	16	8 ± 0.1	0.315 ± 0.004	330	13	2,500	

TR04 P065LS ******

 \bigcirc

Marking information

- " TR04P065LS " = Part No.
- " ****** " = Date Code Marking

Font type: Arial

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and
reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular
purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support
equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

TO-252

A