N-Channel Enhancement Mode MOSFET

Features

- Low RDS(ON)
- Low Input Capacitance
- Low Input/Output Leakage
- Halogen and Antimony Free(HAF), RoHS compliant

Application

- Motor/Body Load Control
- Load Switch
- DC-DC converters and Off-line UPS

Key Parameters

Value	Unit				
30	V				
3.9 @ V _{GS} = 10 V	mQ				
4.5 @ V _{GS} = 4.5 V	11152				
1.4	V				
74 @ V _{GS} = 10 V	nC				
	30 3.9 @ V _{GS} = 10 V 4.5 @ V _{GS} = 4.5 V 1.4				

Absolute Maximum Ratings (at Ta = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	30	V	
Gate-Source Voltage	V_{GS}	V _{GS} ± 20		
Continuous Drain Current $T_c = 25^{\circ}C$ $T_c = 100^{\circ}C$		l _D 80 50		A
Peak Drain Current, Pulsed ¹⁾	I _{DM}	350	А	
Avalanche Current	las	39	А	
Single Pulse Avalanche Energy ²⁾		E _{AS}	76	mJ
Power Dissipation $T_c = 25^{\circ}C$ $T_c = 100^{\circ}C$		PD	41.6 16.6	W
Operating Junction and Storage Temperature R	TJ, Tstg	- 55 to + 150	°C	

Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Case	Rejc	3	°C/W
Thermal Resistance from Junction to Ambient ³⁾	Reja	35	°C/W

¹⁾ Pulse Test: Pulse Width \leq 100 µs, Duty Cycle \leq 2%, Repetitive rating, pulse width limited by junction temperature T_{J(MAX)} = 150°C.

 $^{2)}$ Limited by $T_{J(MAX)},$ starting T_{J} = 25 °C, L = 0.1 mH, R_{g} = 25 $\Omega,$ I_{D} = 39 A, V_{GS} = 10 V.

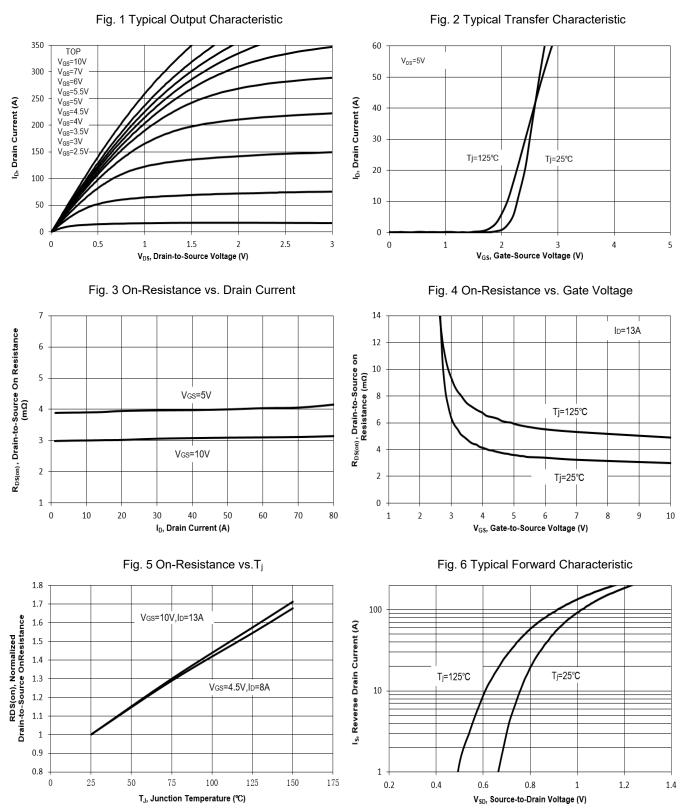
³⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.

Drain

Source

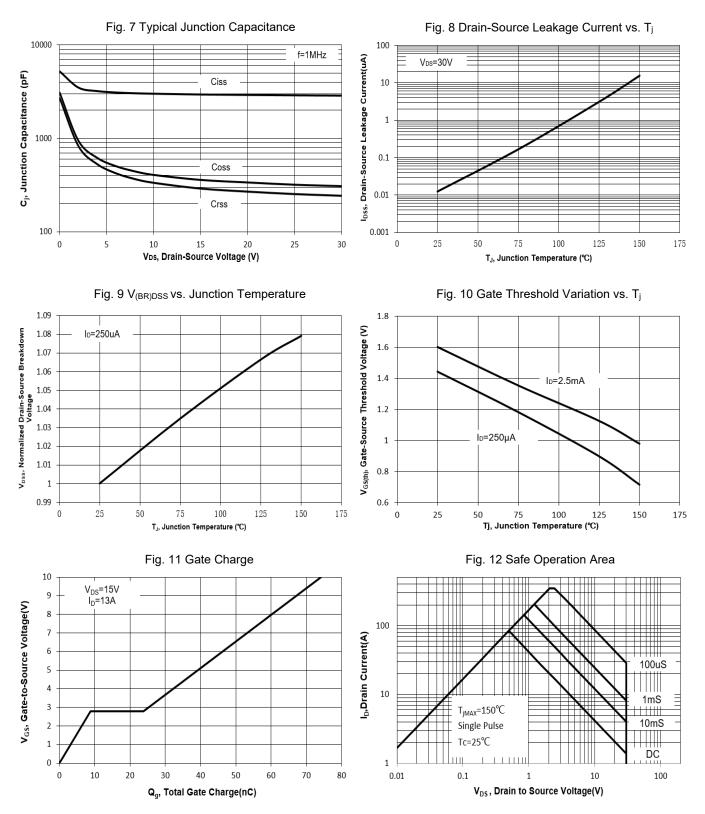
Gate

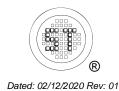
1.Gate 2.Drain 3.Source TO-252 Plastic Package

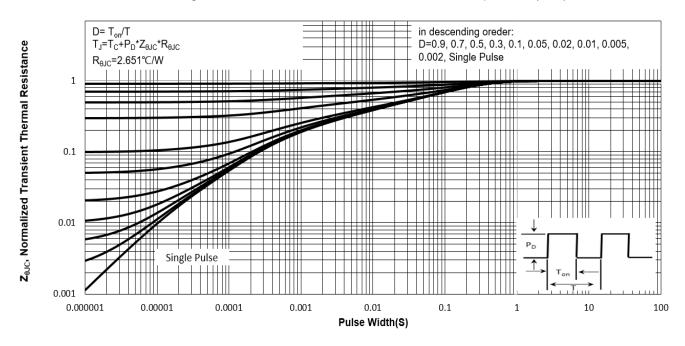


Characteristics at $T_a = 25^{\circ}C$ unless otherwise specified

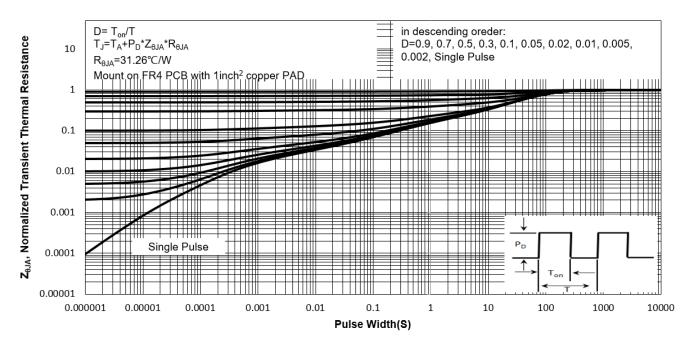
Characteristics at T _a = 25°C unless otherwise specific Parameter	Symbol	Min.	Тур.	Max.	Unit
	Oymbol	IVIIII.	тур.	ινίαλ.	Onit
STATIC PARAMETERS			[Γ	[
Drain-Source Breakdown Voltage at I⊳ = 250 μA	BV _{DSS}	30	-	-	V
Drain-Source Leakage Current at V _{DS} = 24 V	IDSS	-	-	1	μA
Gate Leakage Current at V_{GS} = ± 20 V	lgss	-	-	± 100	nA
Gate-Source Threshold Voltage at V_{DS} = V_{GS} , I_D = 250 μ A	$V_{GS(th)}$	1	-	2.3	V
Drain-Source On-State Resistance at V_{GS} = 10 V, I_D = 13 A at V_{GS} = 4.5 V, I_D = 8 A	R _{DS(on)}	-	3	3.9 4.5	mΩ
DYNAMIC PARAMETERS					
Forward Transconductance at V_{DS} = 5 V, I_D = 10 A	g fs	-	29	-	S
Gate resistance at V _{DS} = 0 V, f = 1 MHz	Rg	-	0.5	-	Ω
Input Capacitance at V_{GS} = 0 V, V_{DS} = 15 V, f = 1 MHz	Ciss	-	2946	-	pF
Output Capacitance at V_{GS} = 0 V, V_{DS} = 15 V, f = 1 MHz	Coss	-	359	-	pF
Reverse Transfer Capacitance at V_{GS} = 0 V, V_{DS} = 15 V, f = 1 MHz	C _{rss}	-	291	-	pF
Gate charge total at V_{DS} = 15 V, I_D = 13 A, V_{GS} = 10 V at V_{DS} = 15 V, I_D = 13 A, V_{GS} = 4.5 V	Qg	-	74 36	-	nC
Gate to Source Charge at V_{DS} = 15 V, I_D = 13 A, V_{GS} = 10 V	Q_gs	-	8	-	nC
Gate to Drain Charge at V_{DS} = 15 V, I_D = 13 A, V_{GS} = 10 V	Q_{gd}	-	15	-	nC
Turn-On Delay Time at V _{DS} = 15 V, I _D = 13 A, V _{GS} = 10 V, R _g = 3.3 Ω	t _{d(on)}	-	23	-	ns
Turn-On Rise Time at V _{DS} = 15 V, I _D = 13 A, V _{GS} = 10 V, R _g = 3.3 Ω	tr	-	40	-	ns
Turn-Off Delay Time at V _{DS} = 15 V, I _D = 13 A, V _{GS} = 10 V, R _g = 3.3 Ω	$t_{\rm d(off)}$	-	24	-	ns
Turn-Off Fall Time at V _{DS} = 15 V, I _D = 13 A, V _{GS} = 10 V, R _g = 3.3 Ω	t _f	-	3	-	ns
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at $I_s = 1 A$, $V_{Gs} = 0 V$	Vsd	-	-	1.2	V
Body-Diode Continuous Current	ls	-	-	80	Α
Body-Diode Continuous Current, Pulsed	lsм	-	-	350	Α
Body Diode Reverse Recovery Time at Is = 13 A, di/dt = 100 A / µs	t _{rr}	-	15	-	ns
Body Diode Reverse Recovery Charge at Is = 13 A, di/dt = 100 A / μs	Qrr	-	5	-	nC




Electrical Characteristics Curves

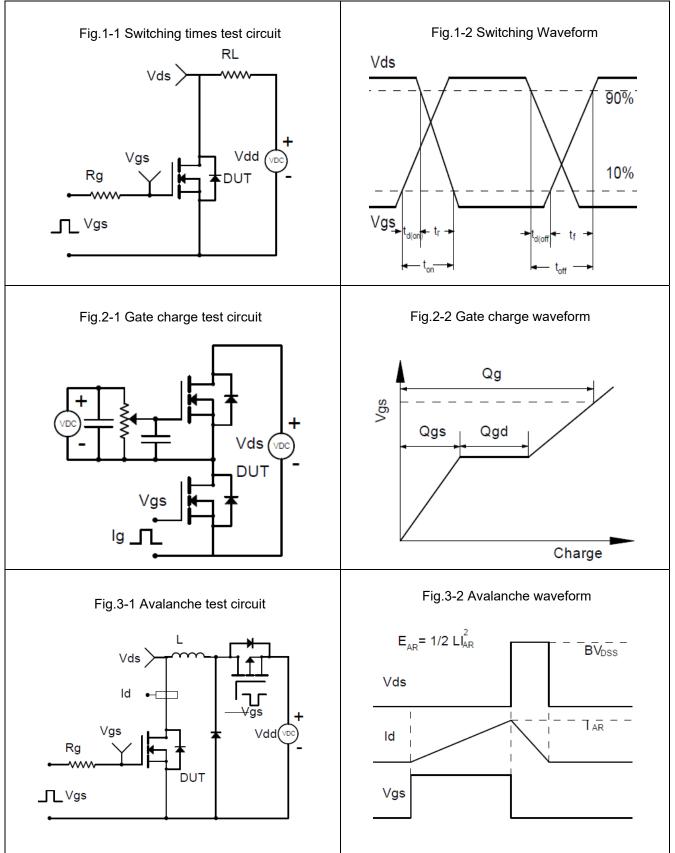


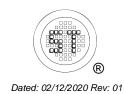
Electrical Characteristics Curves

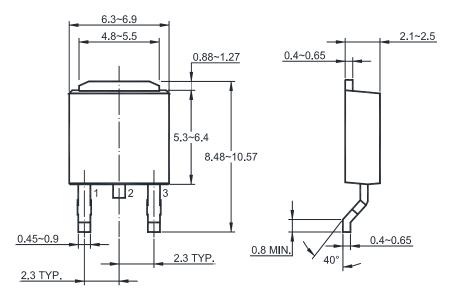


Electrical Characteristics Curves

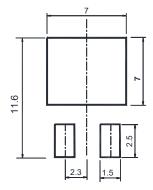
Fig. 13 Normalized Maximum Transient Thermal Impedance(zeuc)


Fig. 14 Normalized Maximum Transient Thermal Impedance(z_{ΘJA})




WTR03N039L-HAF

Test Circuits



Package Outline (Dimensions in mm)

Recommended Soldering Footprint

Packing information

Daakaga	Tape Width	Pitch		Reel Size		Per Reel Packing Quantity
Package	(mm)	mm	inch	mm	inch	
TO-252	12	8 ± 0.1	0.315 ± 0.004	330	13	2,500

Marking information

" TR03N039L " = Part No.

" ****** " = Date Code Marking Font type: Arial

IMPORTANT NOTICE

Our company and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability without further notice to this document and any product described herein.

Statements described herein regarding the reliability and suitability of products is for illustrative purposes only. Products specifically described herein are not authorized for use as critical components in life support devices, automobile, military, aviation or aerospace only with the written approval of our company.

The information contained herein is presented only as guidance for product use. No license to any intellectual property rights is granted under this document. No responsibility is assumed by our company for any infringement of patents or any other intellectual property rights of third party that may result from the use of the product.

