N-Channel Enhancement Mode MOSFET

Features

- Low RDS(ON)
- Low Miller Charge
- Halogen and Antimony Free(HAF), RoHS compliant

Application

- Motor/Body Load Control
- Load Switch
- DC-DC converters and Off-line UPS

Key Parameters

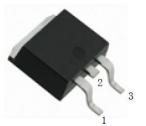
Parameter	Value	Unit	
BV _{DSS}	30	V	
D Max	3.1 @ V _{GS} = 10 V	mΩ	
R _{DS(ON)} Max	4.2 @ V _{GS} = 4.5 V	mΩ	
V _{GS(th)} typ	1.5	V	
Q _g typ	79 @ V _{GS} = 10 V	nC	

Absolute Maximum Ratings (at Ta = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	30	V	
Gate-Source Voltage	V _{GS}	± 20	V	
Continuous Drain Current	lo	68 43	А	
Peak Drain Current, Pulsed ¹⁾	I _{DM}	210	A	
Avalanche Current	I _{AS}	40	А	
Single Pulse Avalanche Energy 2)	Eas	80	mJ	
Power Dissipation	T _c = 25°C T _c = 100°C	PD	34.7 13.8	W
Operating Junction and Storage Tempera	TJ, Tstg	- 55 to + 150	°C	

Thermal Characteristics

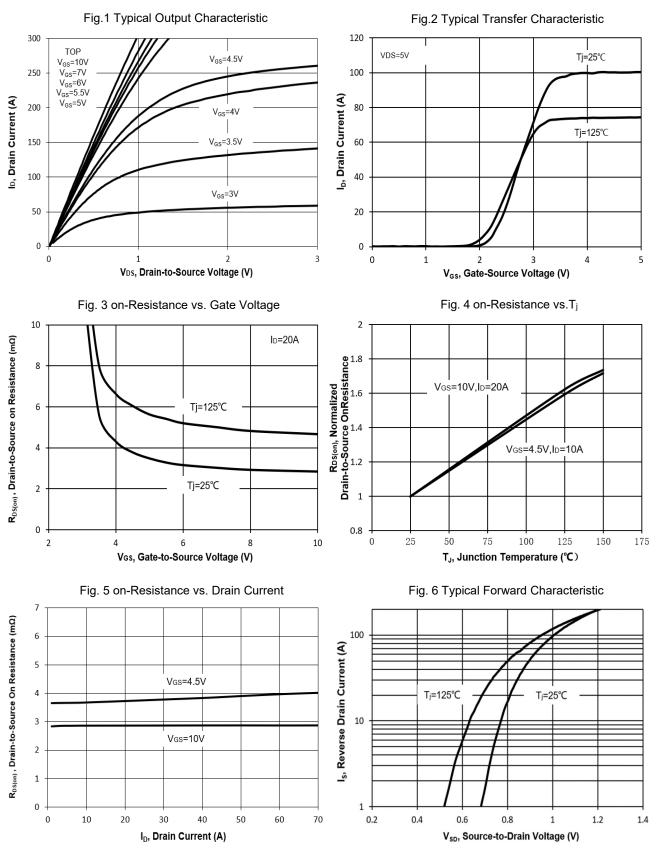
Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Case	Rejc	3.6	°C/W
Thermal Resistance from Junction to Ambient ³⁾	Reja	50	°C/W


¹⁾ Pulse Test: Pulse Width \leq 100 µs, Duty Cycle \leq 2%, Repetitive rating, pulse width limited by junction temperature T_{J(MAX)} = 150°C.

²⁾ Limited by $T_{J(MAX)}$, starting $T_J = 25 \text{ °C}$, L = 0.1 mH, $R_g = 25 \Omega$, $I_D = 40 \text{ A}$, $V_{GS} = 10 \text{ V}$.

³⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.

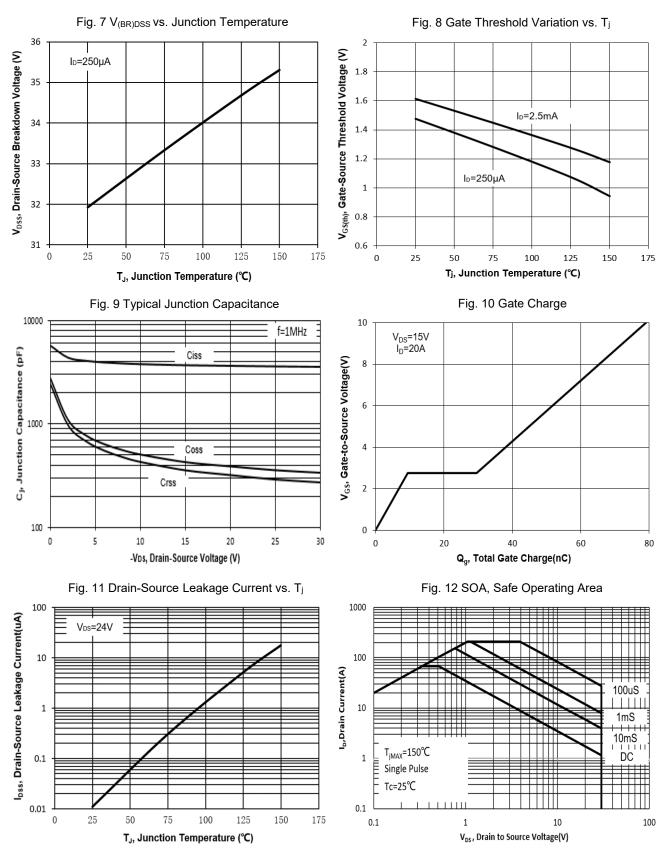
Drain Gate


1.Gate 2.Drain 3.Source TO-252 Plastic Package

Characteristics at Ta = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS			1	1	
Drain-Source Breakdown Voltage at $I_D = 250 \ \mu A$	BV _{DSS}	30	-	-	V
Drain-Source Leakage Current at V _{DS} = 24 V	IDSS	-	-	1	μA
Gate Leakage Current at V_{GS} = ± 20 V	lgss	-	-	± 100	nA
Gate-Source Threshold Voltage at V _{DS} = V _{GS} , I _D = 250 µA	V _{GS(th)}	1.2	-	2.5	V
Drain-Source On-State Resistance at V_{GS} = 10 V, I_D = 20 A at V_{GS} = 4.5 V, I_D = 10 A	R _{DS(on)}	-	2.4	3.1 4.2	mΩ
DYNAMIC PARAMETERS					
Gate resistance at V_{DS} = 0 V, f = 1 MHz	Rg	-	0.6	-	Ω
Forward Transconductance at V_{DS} = 5 V, I_D = 20 A	g fs	-	38	-	S
Input Capacitance at V_{GS} = 0 V, V_{DS} = 15 V, f = 1 MHz	C _{iss}	-	3652	-	pF
Output Capacitance at V_{GS} = 0 V, V_{DS} = 15 V, f = 1 MHz	Coss	-	430	-	pF
Reverse Transfer Capacitance at V_{GS} = 0 V, V_{DS} = 15 V, f = 1 MHz	Crss	-	353	-	pF
Gate charge total at V_{DS} = 15 V, I_D = 20 A, V_{GS} = 10 V at V_{DS} = 15 V, I_D = 20 A, V_{GS} = 4.5 V	Qg	-	79 40	-	nC
Gate to Source Charge at V_{DS} = 15 V, I_D = 20 A, V_{GS} = 10 V	Qgs	-	9.5	-	nC
Gate to Drain Charge at V_{DS} = 15 V, I_D = 20 A, V_{GS} = 10 V	Q _{gd}	-	20	-	nC
Turn-On Delay Time at V _{GS} = 10 V, V _{DS} = 15 V, I _D = 10 A, R _g = 3.3Ω	t _{d(on)}	-	25.6	-	nS
Turn-On Rise Time at V _{GS} = 10 V, V _{DS} = 15 V, I _D = 10 A, R _g = 3.3 Ω	tr	-	35	-	nS
Turn-Off Delay Time at V _{GS} = 10 V, V _{DS} = 15 V, I _D = 10 A, R _g = 3.3 Ω	$t_{d(off)}$	-	25	-	nS
Turn-Off Fall Time at V _{GS} = 10 V, V _{DS} = 15 V, I _D = 10 A, R _g = 3.3Ω	t _f	-	4.8	-	nS
Body-Diode PARAMETERS			i .	i	
Drain-Source Diode Forward Voltage at Is = 1 A, V _{GS} = 0 V	V _{SD}	-	0.7	1.2	V
Body-Diode Continuous Current	ls	-	-	68	Α
Body-Diode Continuous Current, Pulsed	lsм	-	-	210	Α
Body Diode Reverse Recovery Time at I _S = 10 A, di/dt = 100 A / μs	t _{rr}	-	17	-	nS
Body Diode Reverse Recovery Charge at $I_S = 10 \text{ A}$, di/dt = 100 A / μ s	Qrr	-	7.5	-	nC

Electrical Characteristics Curves



3/8

Dated: 20/02/2021 Rev: 02

Electrical Characteristics Curves

0.001 0.000001

0.00001

0.0001

0.001

Electrical Characteristics Curves

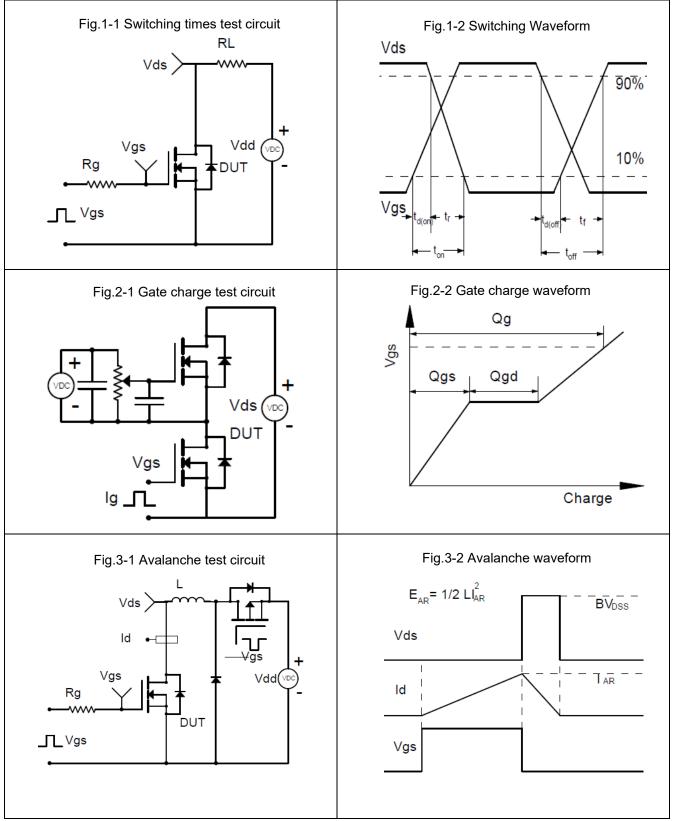
Fig.13 Normalized Maximum Transient Thermal Impedance(z_{OJA})

(R) Dated: 20/02/2021 Rev: 02

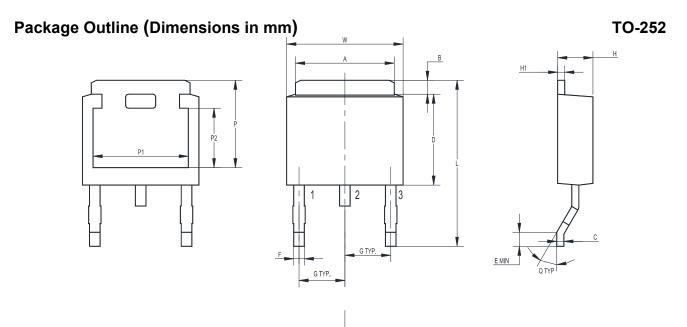
1 т

10

100

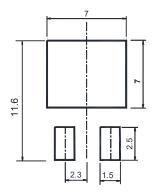

1

0.01


Puse Width(S)

0.1

Test Circuits



UNIT	Α	В	С	D	Е	F	G	W	Н	H1	Q	L	Р	P1	P2
	5.5	1.20	0.65	6.2	0.8	1.0	2.3	6.7	2.5	0.65	60°	10.7	5.4	5.0	3.4
mm	4.9	0.85	0.4	5.6	MIN	0.5	TYP	6.1	2.1	0.4	TYP	9	5.0	4.6	2.9

Recommended Soldering Footprint

Packing information

Dookaga	Package Tape Width (mm)		tch	Reel	Size	Per Reel Packing Quantity	
гаскауе			inch	mm	inch	Fer Reel Facking Quantity	
TO-252	12	8 ± 0.1	0.315 ± 0.004	330	13	2,500	

Marking information

- " TR03N030LS " = Part No.
- " ****** " = Date Code Marking

Font type: Arial

IMPORTANT NOTICE

Our company and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability without further notice to this document and any product described herein.

Statements described herein regarding the reliability and suitability of products is for illustrative purposes only. Products specifically described herein are not authorized for use as critical components in life support devices, automobile, military, aviation or aerospace only with the written approval of our company.

The information contained herein is presented only as guidance for product use. No license to any intellectual property rights is granted under this document. No responsibility is assumed by our company for any infringement of patents or any other intellectual property rights of third party that may result from the use of the product.

