N-Channel Enhancement Mode MOSFET

Features

- Surface-mounted package
- Halogen and Antimony Free(HAF), RoHS compliant

Applications

- BLDC Motor drive applications
- Battery powered circuits
- Synchronous rectifier applications
- Resonant mode power supplies

Key Parameters

Parameter	Value	Unit	
BV _{DSS}	100	V	
Proven Mox	115 @ V _{GS} = 10 V	mΟ	
R _{DS(ON)} Max	125 @ V _{GS} = 4.5 V	11122	
V _{GS(th)} typ	1.6	V	
Q _g typ	20 @ V _{GS} = 10 V	nC	

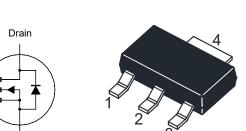
Absolute Maximum Ratings (at T_a = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	100	V
Gate-Source Voltage	V _{GS}	± 20	V
Lirgin (Lirrant	= 25°C = 100°C	5 3.5	А
Peak Drain Current, Pulsed ¹⁾	I _{DM}	20	А
Single-Pulse Avalanche Current	las	5	А
Single-Pulse Avalanche Energy 2)	Eas	3.7	mJ
Total Power Dissipation T _c	= 25°C P _{tot}	10	W
Operating Junction and Storage Temperature R	ange T _j , T _{stg}	- 55 to + 175	C°

Gate

Source

Thermal Characteristics


Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Case	R _{θJC}	15	°C/W
Thermal Resistance - Junction to Ambient ³⁾	Reja	45	°C/W
Thermal Resistance - Junction to Ambient ⁴⁾ Steady State	$R_{\theta JA}$	100	°C/W

¹⁾ Pulse Test: Pulse Width \leq 100 µs, Duty Cycle \leq 2%, Repetitive rating, pulse width limited by junction temperature T_{J(MAX)} = 175°C.

 $^{2)}$ Limited by $T_{J(MAX)},$ starting T_{J} = 25°C, L = 0.3 mH, R_{g} = 25 $\Omega,$ I_{AS} = 5 A, V_{GS} = 10 V.

 $^{3)}$ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate, t < 10 s.

⁴⁾ Device mounted on FR-4 substrate PC board, minimum recommended footprint.

1.Gate 2.Drain 3.Source 4.Drain SOT-223 Plastic Package

WTQ10N1K1LS-HAF

Characteristics at $T_a = 25^{\circ}C$ unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at I _D = 250 μA	BV _{DSS}	100	-	-	V
Drain-Source Leakage Current at V _{DS} = 80 V	IDSS	-	-	1	μA
Gate Leakage Current at V_{GS} = ± 20 V	I _{GSS}	-	-	± 100	nA
Gate-Source Threshold Voltage at V _{DS} = V _{GS} , I _D = 250 μA	V _{GS(th)}	1.2	-	2.5	V
Drain-Source On-State Resistance at V_{GS} = 10 V, I_D = 4 A at V_{GS} = 4.5 V, I_D = 3 A	R _{DS(on)}	-	106 -	115 125	mΩ
DYNAMIC PARAMETERS					
Forward Transconductance at V_{DS} = 5 V, I_D = 4 A	g fs	-	8	-	S
Gate Resistance at $V_{DS} = 0 V$, $V_{GS} = 0 V$, f = 1 MHz	R _g	-	1.1	-	Ω
Input Capacitance at V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz	C _{iss}	-	1155	-	pF
Output Capacitance at V_{DS} = 50 V, V_{GS} = 0 V, f = 1 MHz	Coss	-	28	-	pF
Reverse Transfer Capacitance at V_{DS} = 50 V, V_{GS} = 0 V, f = 1 MHz	C _{rss}	-	25	-	pF
Gate Charge Total at $V_{DS} = 50 \text{ V}$, $V_{GS} = 10 \text{ V}$, $I_D = 4 \text{ A}$ at $V_{DS} = 50 \text{ V}$, $V_{GS} = 4.5 \text{ V}$, $I_D = 4 \text{ A}$	Qg	-	20 9	-	nC
Gate to Source Charge at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 4 A	Q _{gs}	-	4	-	nC
Gate to Drain Charge at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 4 A	Q_gd	-	2	-	nC
Turn-On Delay Time at V _{DS} = 50 V, V _{GS} = 10 V, I _D = 4 A, R _g = 3.3 Ω	t _{d(on)}	-	14	-	ns
Turn-On Rise Time at V _{DS} = 50 V, V _{GS} = 10 V, I _D = 4 A, R _g = 3.3 Ω	tr	-	4	-	ns
Turn-Off Delay Time at V _{DS} = 50 V, V _{GS} = 10 V, I _D = 4 A, R _g = 3.3 Ω	$t_{d(off)}$	-	13	-	ns
Turn-Off Fall Time at V _{DS} = 50 V, V _{GS} = 10 V, I _D = 4 A, R _g = 3.3 Ω	t _f	-	2	-	ns
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at Is = 1 A, V_{GS} = 0 V	V _{SD}	-	-	1.2	V
Body-Diode Continuous Current	ls	-	-	5	Α
Body-Diode Continuous Current, Pulsed	lsм	-	-	20	Α
Body Diode Reverse Recovery Time at Is = 4 A, di/dt = 100 A / μ s	t _{rr}	-	21	-	ns
Body Diode Reverse Recovery Charge at $I_s = 4 A$, di/dt = 100 A / μs	Qrr	-	22	-	nC

WTQ10N1K1LS-HAF

Electrical Characteristics Curves

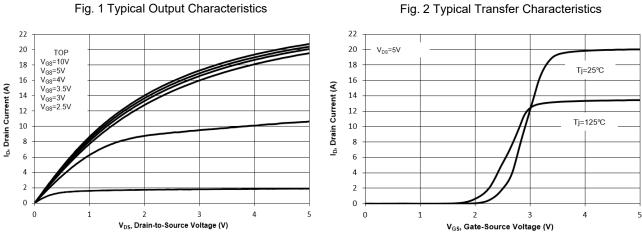
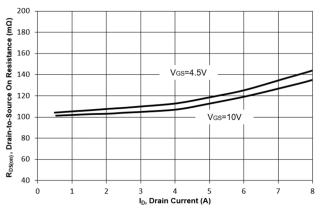



Fig. 3 on-Resistance vs Drain Current

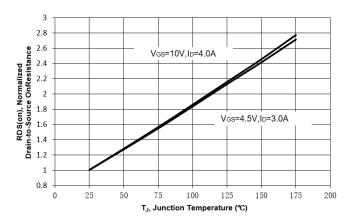
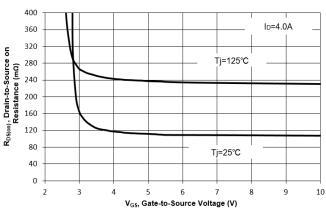




Fig. 4 on-Resistance vs. Gate to Source Voltage

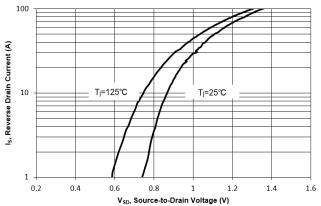
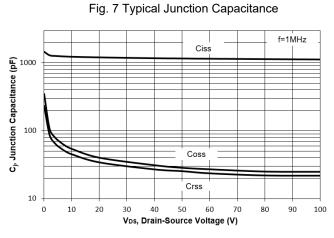
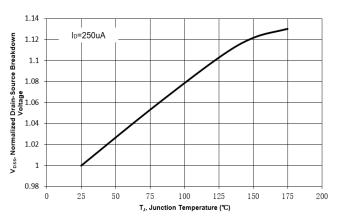
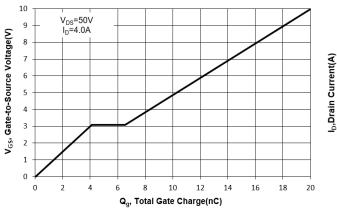
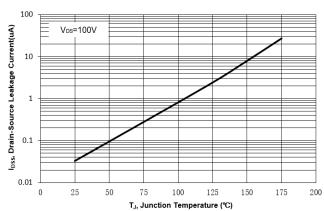
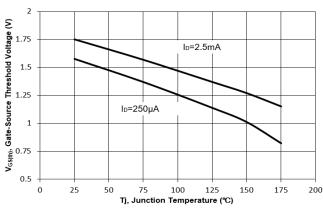


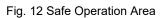
Fig. 2 Typical Transfer Characteristics

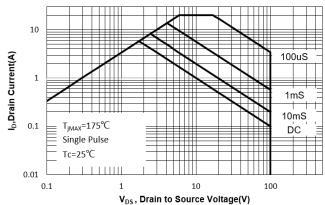
Electrical Characteristics Curves

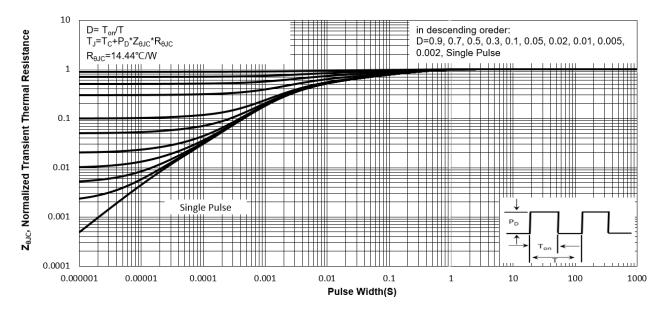
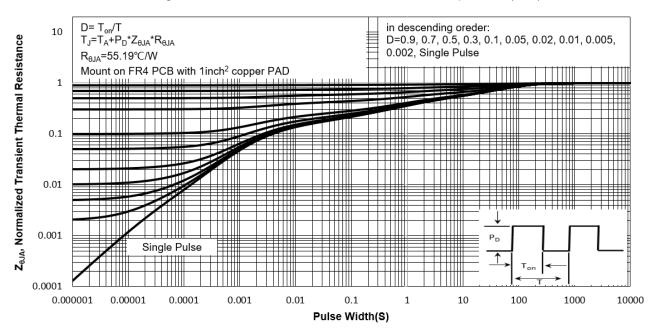

Fig. 9 V(BR)DSS vs. Junction Temperature

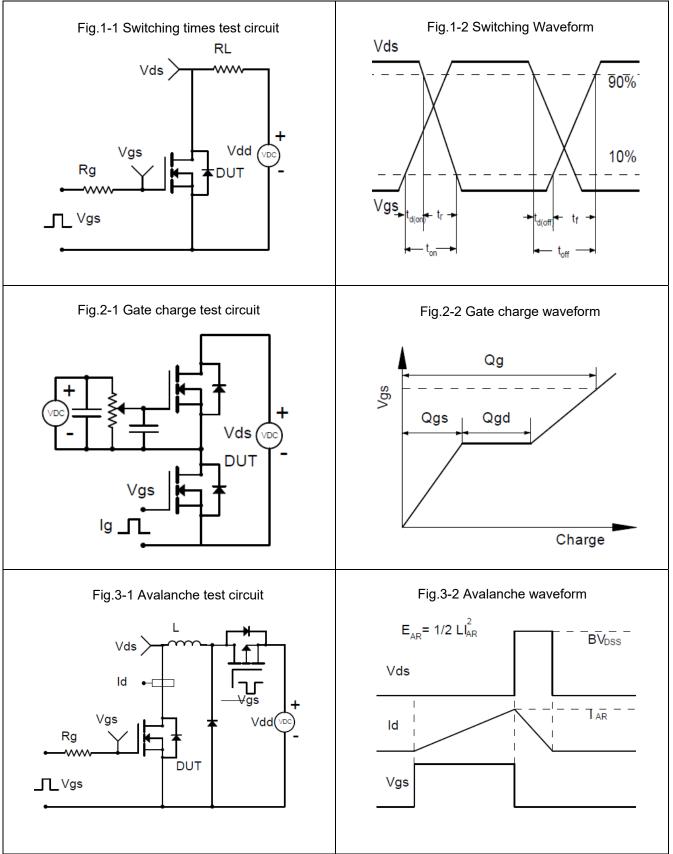




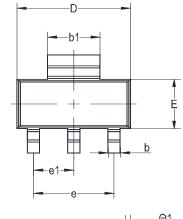


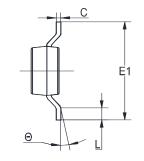
Electrical Characteristics Curves


Fig. 14 Normalized Maximum Transient Thermal Impedance(ZeJA)

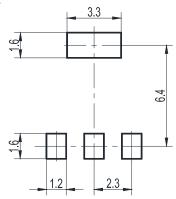
WTQ10N1K1LS-HAF


Test Circuits



Dated: 10/01/2024 Rev: 03

Package Outline (Dimensions in mm)



Unit	Α	A1	b	b1	С	D	E	E1	е	e1	L	Θ	Θ1	Θ2
mm	1.8	0.1	0.8	3.1	0.32	6.7	3.7	7.3	4.6	2.3	1.1	10°	7°	7°
mm	1.5	MAX	0.6	2.9	0.22	6.3	3.3	6.7	TYP	TYP	0.7	0°	0°	0°

Recommended Soldering Footprint

Packing information

Dookogo	Tape Width	Pit	tch	Reel	Size	Per Peel Peeking Quantity
Package	(mm)	mm	inch	mm	inch	Per Reel Packing Quantity
SOT-223	12	8 ± 0.1	0.315 ± 0.004	330	13	3,000

Marking information

- " TQ10N1K1LS " = Part No.
- " ****** " = Date Code Marking

Font type: Arial

TQ10N1K1LS *****

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

SOT-223