
N-Channel Enhancement Mode MOSFET

Features

- Optimized for synchronous rectification low Input capacitance
- · Low switching charge
- · Low miller capacitance
- Fully characterized capacitance and avalanche
- Halogen and Antimony Free(HAF), RoHS compliant

1.Source 2.Source 3.Source 4.Gate 5.Drain 6.Drain 7.Drain 8.Drain DFN5060 Plastic Package

Applications

- · Battery powered circuits
- BLDC Motor drive applications
- Half-bridge and full-bridge topologies
- · Synchronous rectifier applications
- Resonant mode power supplies

Key Parameters

Parameter	Value	Unit		
BV _{DSS}	60	V		
Bassau Moy	4 @ V _{GS} = 10 V	mΩ		
R _{DS(ON)} Max	6 @ V _{GS} = 4.5 V	mΩ		
V _{GS(th)} typ	1.6	V		
Q _g typ	51.4 @ V _{GS} = 10 V	nC		

Absolute Maximum Ratings (at Ta = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	60	V	
Gate-Source Voltage	V _{GS}	± 20	V	
Drain Current Continuous	$T_{c} = 25^{\circ}C$ $T_{c} = 100^{\circ}C$	l _D	70 44	Α
Peak Drain Current, Pulsed 1)		I_{DM}	300	Α
Power Dissipation	$T_c = 25^{\circ}C$	P_D	34.7	W
Avalanche Current, Single Pulse		I _{AS}	45	Α
Avalanche Energy, Single Pulse 2)		E _{AS}	101	mJ
Operating Junction and Storage Temperature	Tj, Tstg	- 55 to + 150	$^{\circ}$ C	

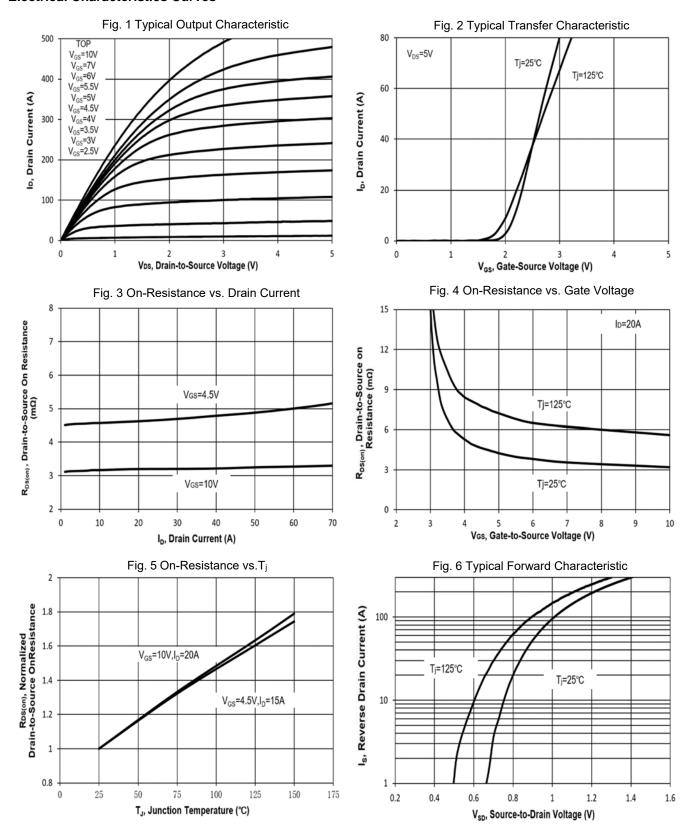
Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Case	Rejc	3.6	°C/W
Thermal Resistance from Junction to Ambient 3)	Reja	50	°C/W

¹⁾ Pulse Test: Pulse Width ≤ 100 μs, Duty Cycle ≤ 2%.

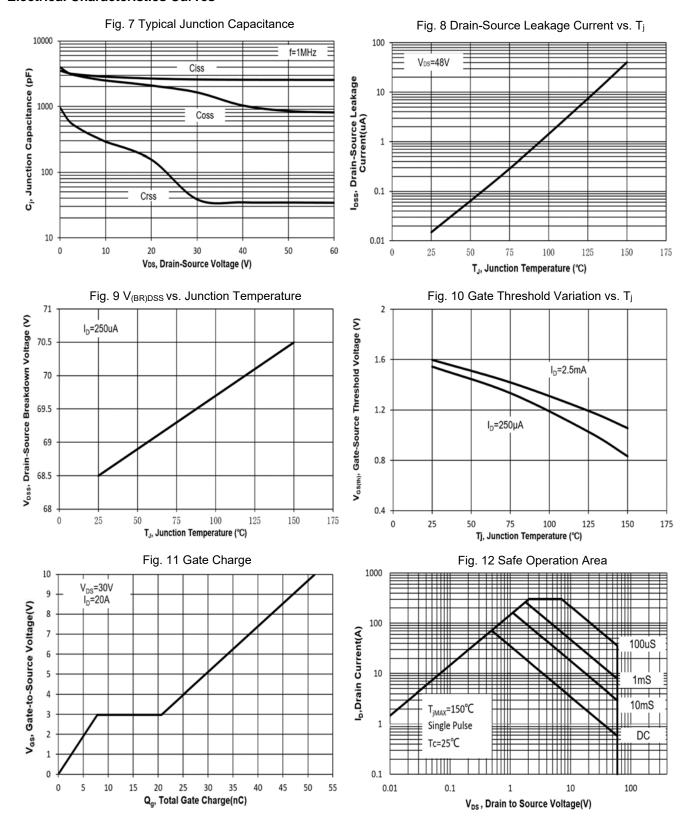
 $^{^{2)}}$ Limited by $T_{J(MAX)},$ starting T_J = 25 °C, L = 0.1 mH, R_g = 25 $\Omega,\,I_D$ = 45 A, V_{GS} = 10 V.

³⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.


WTM506N031L-HAF

Characteristics at T_a = 25°C unless otherwise specified

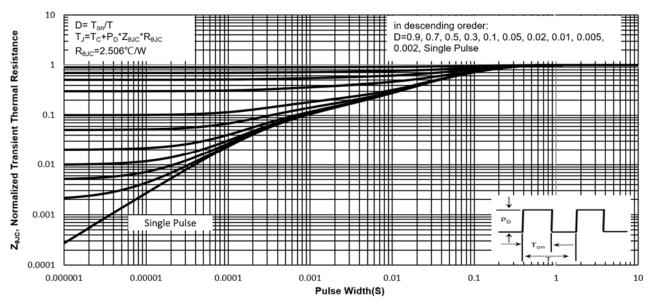
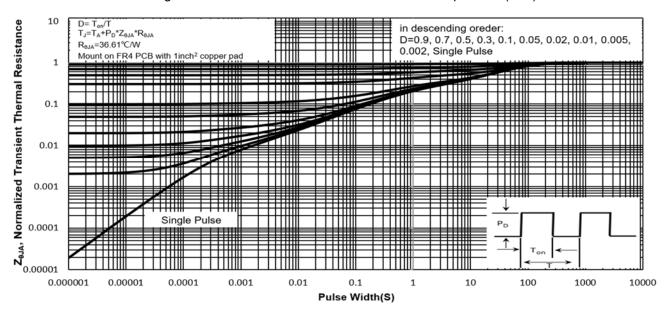
Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS	-				
Drain-Source Breakdown Voltage at I _D = 250 μA	BV _{DSS}	60	-	-	٧
Drain-Source Leakage Current at V _{DS} = 48 V	I _{DSS}	-	-	1	μΑ
Gate-Source Leakage Current at $V_{GS} = \pm 20 \text{ V}$	Igss	-	-	±100	nA
Gate-Source Threshold Voltage at V_{DS} = V_{GS} , I_D = 250 μ A	V _{GS(th)}	1.2	-	2.3	V
Drain-Source On-State Resistance at V_{GS} = 10 V, I_D = 20 A at V_{GS} = 4.5 V, I_D = 15 A	R _{DS(on)}	- -	3.1 -	4 6	mΩ
DYNAMIC PARAMETERS					
Gate Resistance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 0 \text{ V}$, $f = 1 \text{MHz}$	Rg	-	0.9	-	Ω
Forward Transconductance at $V_{DS} = 5 \text{ V}$, $I_D = 20 \text{ A}$	g fs	-	50	-	S
Input Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 40 \text{ V}$, $f = 1 \text{ MHz}$	C _{iss}	-	2571	-	pF
Output Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 40 \text{ V}$, $f = 1 \text{ MHz}$	Coss	-	1031	-	pF
Reverse Transfer Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 40 \text{ V}$, $f = 1 \text{ MHz}$	Crss	-	35	-	pF
Total Gate Charge at V_{DS} = 30 V, I_D = 20 A, V_{GS} = 10 V at V_{DS} = 30 V, I_D = 20 A, V_{GS} = 4.5 V	Qg	- -	51.4 26.5	-	nC
Gate Source Charge at V_{DS} = 30 V, I_D = 20 A, V_{GS} = 10 V	Q_{gs}	-	7.8	-	nC
Gate Drain Charge at V_{DS} = 30 V, I_D = 20 A, V_{GS} = 10 V	Q_{gd}	-	12.8	-	nC
Turn-On Delay Time at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 20 A, R_g = 3.3 Ω	$t_{\sf d(on)}$	-	18	-	nS
Turn-On Rise Time at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 20 A, R_g = 3.3 Ω	t _r	-	31	-	nS
Turn-Off Delay Time at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 20 A, R_g = 3.3 Ω	$t_{\text{d(off)}}$	-	18	-	nS
Turn-Off Fall Time at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 20 A, R_g = 3.3 Ω	t _f	-	5	-	nS
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at I _S = 1 A, V _{GS} = 0 V	V _{SD}	-	-	1.2	V
Body-Diode Continuous Current	ls	-	-	70	Α
Body-Diode Continuous Current, Pulsed	Ism	-		300	Α
Body Diode Reverse Recovery Time at I _S = 20 A, di/dt = 100 A / μs	t _{rr}	-	46.5	-	nS
Body Diode Reverse Recovery Charge at I _S = 20 A, di/dt = 100 A / μs	Qrr	-	48.2	-	nC

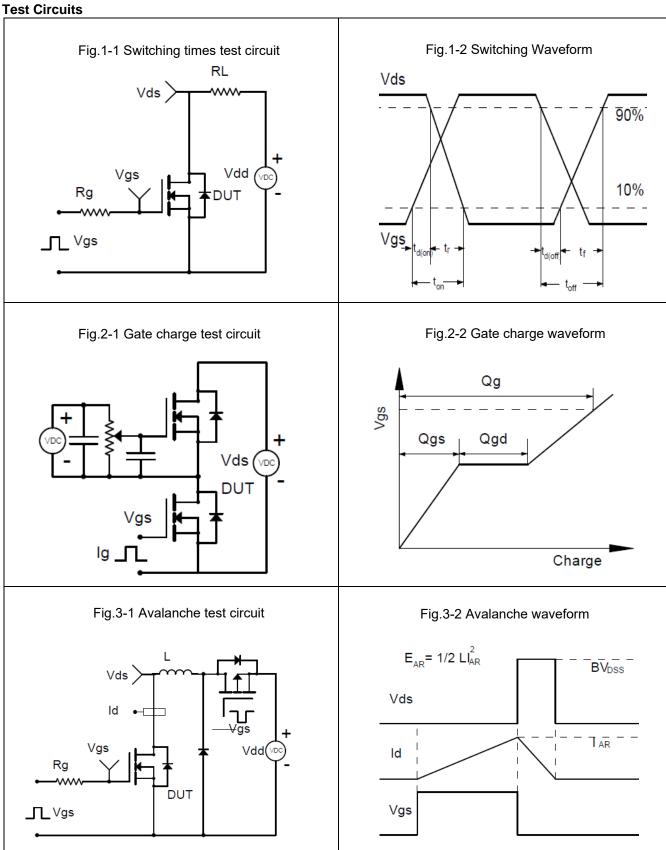


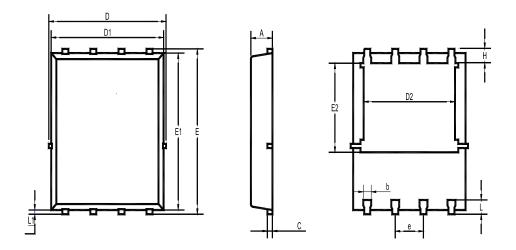
Electrical Characteristics Curves

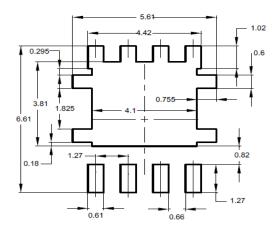
Electrical Characteristics Curves

Electrical Characteristics Curves


Fig.13 Normalized Maximum Transient Thermal Impedance($z_{ text{PJC}}$)


WTM506N031L-HAF


Package Outline Dimensions (Units: mm)

DFN5060

UNIT	Α	b	С	D	D1	D2	E	E1	E2	е	L	L1	Н
mm	1.12	0.51	0.34	5.26	5.1	4. 5	6.25	6	3.66	1.37	0.71	0.2	0.71
111111	0.9	0.33	0.11	4.7	4.7	3.56	5.75	5.6	3.18	1.17	0.35	0.06	0.35

Recommended Soldering Footprint

Packing information

	Tape Width	Pito	ch	Reel Size			
Package	(mm)	mm	inch	mm	inch	Per Reel Packing Quantity	
DFN5060	12	8 ± 0.1	0.315 ± 0.004	330	13	3,000	

Marking information

" TM506N031L " = Part No.

" ***** " = Date Code Marking

Font type: Arial

IMPORTANT NOTICE

Our company and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability without further notice to this document and any product described herein.

Statements described herein regarding the reliability and suitability of products is for illustrative purposes only. Products specifically described herein are not authorized for use as critical components in life support devices, automobile, military, aviation or aerospace only with the written approval of our company.

The information contained herein is presented only as guidance for product use. No license to any intellectual property rights is granted under this document. No responsibility is assumed by our company for any infringement of patents or any other intellectual property rights of third party that may result from the use of the product.

