
WPR65N640-HAF

N-Channel Enhancement Mode MOSFET

Features

- Low R_{DS(on)}
- Low Gate Charge
- Halogen and Antimony Free(HAF), RoHS compliant

Gate Source

1.Gate 2.Drain 3.Source TO-252 Plastic Package

Application

- DC-DC converters
- Lighting

Key Parameters

Parameter	Value	Unit		
BV _{DSS}	650	V		
R _{DS(ON)} Max	0.64 @ V _{GS} = 10 V	Ω		
V _{GS(th)} typ	3	V		
Q _g typ	10 @ V _{GS} = 10 V	nC		

Absolute Maximum Ratings(at Ta = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	650	V	
Gate-Source Voltage	V _G s	V _{GS} ± 30		
Drain Current $ T_c = 25^{\circ}C $ $ T_c = 100^{\circ}C $	I _D	6.4 4	А	
Peak Drain Current, Pulsed 1)	І _{ОМ}	20	Α	
Avalanche Current	las	2.1	Α	
Single Pulse Avalanche Energy ²⁾	E _{AS}	174	mJ	
Power Dissipation T _c = 25°C	PD	61.4	W	
Operating Junction and Storage Temperature Range	T _J , T _{stg}	- 55 to + 150	°C	

Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Case	Rejc	2	°C/W
Thermal Resistance from Junction to Ambient 3)	R _{θJA}	35	°C/W

¹⁾ Pulse Test: Pulse Width ≤ 100 μs, Duty Cycle ≤ 2%, Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ = 150°C.

 $^{^{2)}}$ Limited by $T_{J(MAX)},$ starting T_J = 25 °C, L = 79 mH, R_g = 25 $\Omega,\,I_{AS}$ = 2.1 A, V_{GS} = 10 V.

³⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.

WPR65N640-HAF

Characteristics at Ta = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at I _D = 250 μA	BV _{DSS}	650	-	-	V
Drain-Source Leakage Current at V _{DS} = 520 V	I _{DSS}	-	-	1	μΑ
Gate Leakage Current at V _{GS} = ± 24 V	I _{GSS}	-	-	± 100	nA
Gate-Source Threshold Voltage at V_{DS} = V_{GS} , I_D = 250 μ A	V _{GS(th)}	2	-	4	V
Drain-Source On-State Resistance at $V_{GS} = 10 \text{ V}$, $I_D = 3.5 \text{ A}$	R _{DS(on)}	-	0.55	0.64	Ω
DYNAMIC PARAMETERS					
Forward Transconductance at V_{DS} = 5 V, I_D = 3.5 A	g FS	-	4.2	-	S
Gate Resistance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	Rg	-	5.8	-	Ω
Input Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 300 \text{ V}$, $f = 1 \text{ MHz}$	C _{iss}	-	399	-	pF
Output Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 300 \text{ V}$, $f = 1 \text{ MHz}$	Coss	-	25	-	pF
Reverse Transfer Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 300 \text{ V}$, $f = 1 \text{ MHz}$	C _{rss}	-	4.9	-	pF
Gate charge total at V_{DS} = 325 V, V_{GS} = 10 V, I_D = 3.5 A	Qg	-	10	-	nC
Gate to Source Charge at V_{DS} = 325 V, V_{GS} = 10 V, I_D = 3.5 A	Q _{gs}	-	2.7	-	nC
Gate to Drain Charge at V_{DS} = 325 V, V_{GS} = 10 V, I_D = 3.5 A	Q_{gd}	-	3.6	-	nC
Turn-On Delay Time at V_{DS} = 325 V, V_{GS} = 10 V, I_D = 3.5 A, R_G = 24 Ω	t _{d(on)}	-	22	-	ns
Turn-On Rise Time at V_{DS} = 325 V, V_{GS} = 10 V, I_D = 3.5 A, R_G = 24 Ω	t _r	-	14	-	ns
Turn-Off Delay Time at V_{DS} = 325 V, V_{GS} = 10 V, I_D = 3.5 A, R_G = 24 Ω	$t_{\text{d(off)}}$	-	17	-	ns
Turn-Off Fall Time at V_{DS} = 325 V, V_{GS} = 10 V, I_D = 3.5 A, R_G = 24 Ω	t _f	-	51	-	ns
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at I _S = 1 A, V _{GS} = 0 V	V _{SD}	-	-	1.4	V
Body-Diode Continuous Current	Is	-	-	6.4	Α
Body-Diode Continuous Current, Pulsed	Іѕм	-	-	20	Α
Body Diode Reverse Recovery Time at I _S = 3.5 A, di/dt = 100 A / μs	t _{rr}	-	275	-	ns
Body Diode Reverse Recovery Charge at I _s = 3.5 A, di/dt = 100 A / µs	Qrr	-	1.5	-	μC

Electrical Characteristics Curves

Fig. 1 Typical Output Characteristics

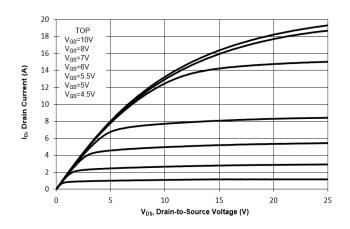


Fig. 2 Typical Transfer Characteristics

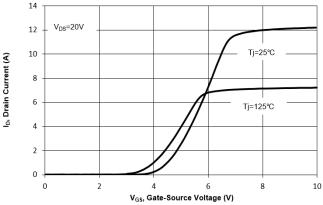


Fig. 3 On-Resistance vs. Drain Current

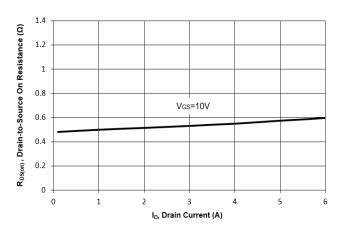


Fig. 4 On-Resistance vs. Gate to Source Voltage

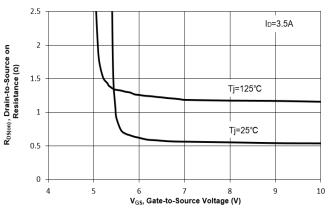


Fig. 5 On-Resistance vs.T_j

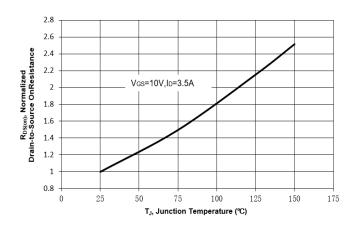
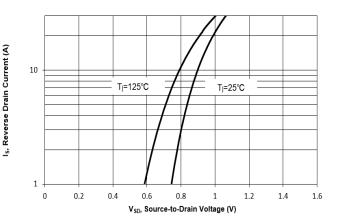



Fig. 6 Typical Body-Diode Forward Characteristics

Electrical Characteristics Curves

Fig. 7 Typical Junction Capacitance

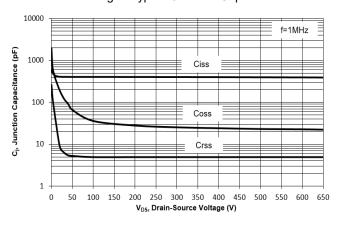


Fig. 8 Drain-Source Leakage Current vs. Tj



Fig. 9 $V_{(BR)DSS}$ vs. Junction Temperature

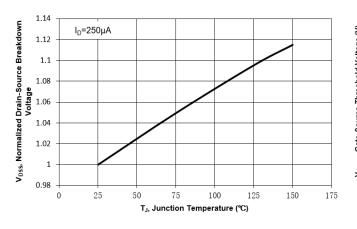


Fig. 10 Gate Threshold Variation vs. T_j

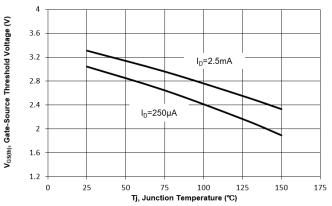


Fig. 11 Gate Charge

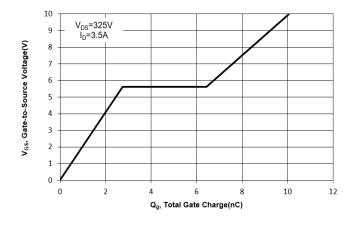
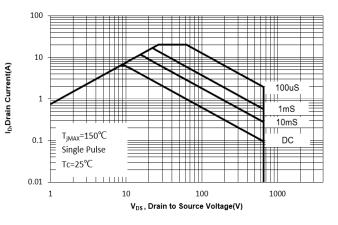



Fig. 12 Safe Operation Area

Electrical Characteristics Curves

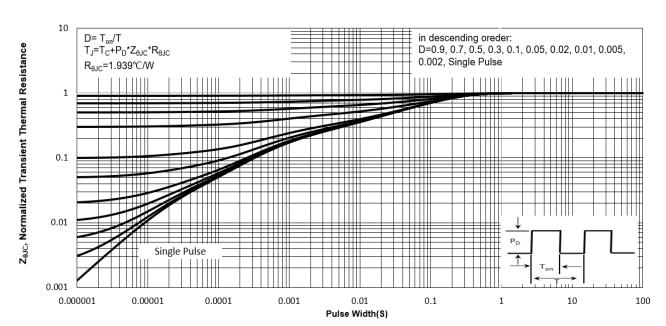
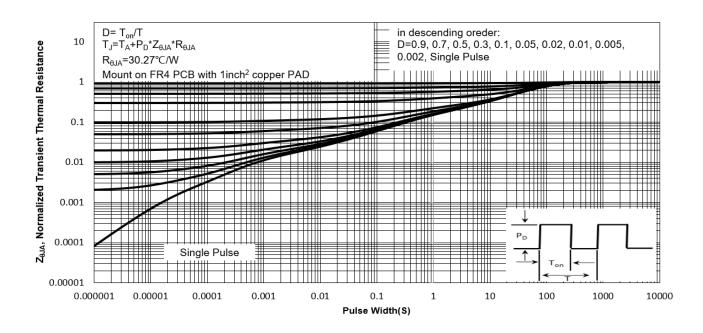
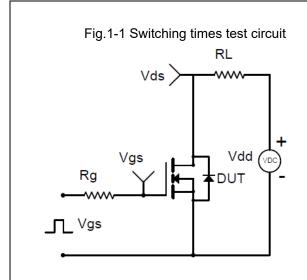



Fig.13 Normalized Maximum Transient Thermal Impedance(zeuc)



WPR65N640-HAF

Test Circuits

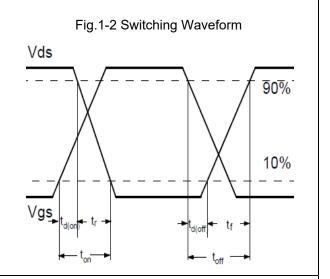


Fig.2-1 Gate charge test circuit

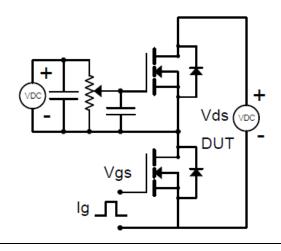


Fig.2-2 Gate charge waveform

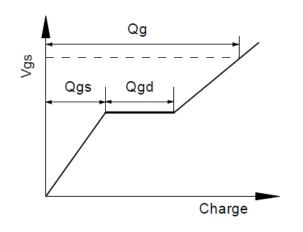
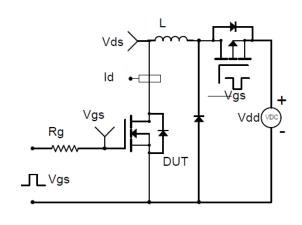
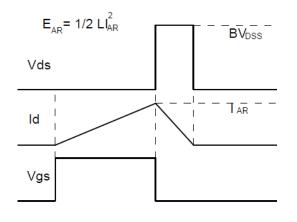
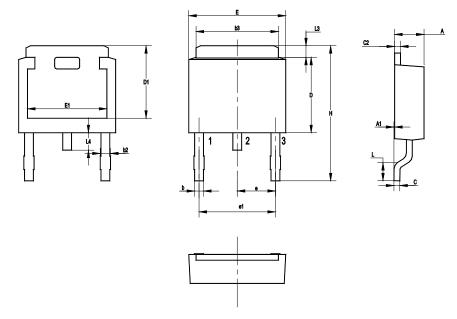
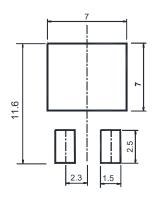


Fig.3-1 Avalanche test circuit


Fig.3-2 Avalanche waveform


Package Outline (Dimensions in mm)

TO-252

UNIT	Α	A1	b	b2	b3	С	C2	D	D1	Е	E1	е	e1	Н	L	L3	L4
	2.5	0.15	1.0	1.15	5.5	0.65	0.65	6.2	5.4	6.7	5.0	2.30	4.60	10.7	1.78	1.20	1.10
mm	2.1	0	0.5	0.65	4.9	0.4	0.4	5.6	5.0	6.1	4.6	TYP.	TYP.	9	1.40	0.85	0.51

Recommended Soldering Footprint

Packing information

· uoking iiiio							
Package	Tape Width	Pit	tch	Reel	Size	Per Reel Packing Quantity	
Fackage	(mm)	mm	inch	mm	inch	rei Neel Fackling Quantity	
TO-252	16	8 ± 0.1	0.315 ± 0.004	330	13	2,500	

Marking information

- " PR65N640 " = Part No.
- " ***** " = Date Code Marking

Font type: Arial

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

