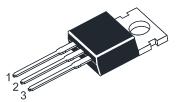
N-Channel Enhancement Mode MOSFET

Features


- Low R_{DS(on)}
- Low Gate Charge
- Halogen and Antimony Free(HAF), RoHS compliant

Application

- DC-DC converters
- Lighting

Gate Source

Drain

1.Gate 2.Drain 3.Source TO-220FB Plastic Package

Key Parameters

Parameter	Value	Unit
BV _{DSS}	650	V
R _{DS(ON)} Max	0.64 @ V _{GS} = 10 V	Ω
V _{GS(th)} typ	3	V
Q _g typ	10 @ V _{GS} = 10 V	nC

Absolute Maximum Ratings(at T_a = 25°C unless otherwise specified)

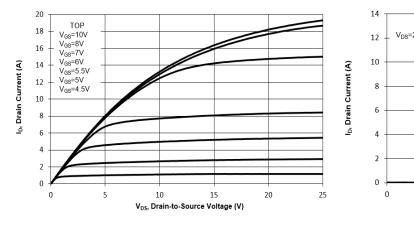
Parameter		Symbol	Value	Unit
Drain-Source Voltage		V _{DS}	650	V
Gate-Source Voltage		V _{GS}	± 30	V
Drain Current	T _c = 25°C T _c = 100°C	ID	4.8 3	A
Peak Drain Current, Pulsed ¹⁾		IDM	20	А
Avalanche Current		las	2.1	А
Single Pulse Avalanche Energy ²⁾		E _{AS}	174	mJ
Power Dissipation	T _c = 25°C	PD	39.6	W
Operating Junction and Storage Temperature	T _J , T _{stg}	- 55 to + 150	°C	

Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Case	Rejc	3.1	°C/W
Thermal Resistance from Junction to Ambient	$R_{\theta JA}$	53	°C/W

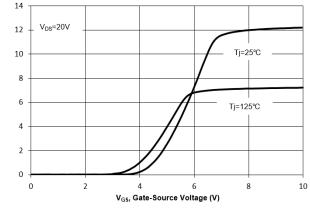
¹⁾ Pulse Test: Pulse Width \leq 100 µs, Duty Cycle \leq 2%, Repetitive rating, pulse width limited by junction temperature T_{J(MAX)} = 150°C.

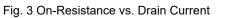
 $^{2)}$ Limited by $T_{J(MAX)},$ starting T_{J} = 25 °C, L = 79 mH, R_{g} = 25 $\Omega,$ I_{D} = 2.1 A, V_{GS} = 10 V.



Characteristics at $T_a = 25^{\circ}C$ unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at $I_D = 250 \ \mu A$	BV _{DSS}	650	-	-	V
Drain-Source Leakage Current at V _{DS} = 520 V	IDSS	-	-	1	μA
Gate Leakage Current at V _{GS} = ± 24 V	lgss	-	-	± 100	nA
Gate-Source Threshold Voltage at V _{DS} = V _{GS} , I _D = 250 μA	V _{GS(th)}	2	-	4	V
Drain-Source On-State Resistance at V_{GS} = 10 V, I _D = 3.5 A	R _{DS(on)}	-	0.56	0.64	Ω
DYNAMIC PARAMETERS					
Forward Transconductance at V_{DS} = 5 V, I_D = 3.5 A	g fs	-	4.2	-	S
Gate Resistance at V _{GS} = 0 V, V _{DS} = 0 V, f = 1 MHz	Rg	-	5.8	-	Ω
Input Capacitance at V _{GS} = 0 V, V _{DS} = 300 V, f = 1 MHz	C _{iss}	-	399	-	pF
Output Capacitance at V_{GS} = 0 V, V_{DS} = 300 V, f = 1 MHz	C _{oss}	-	25	-	pF
Reverse Transfer Capacitance at V_{GS} = 0 V, V_{DS} = 300 V, f = 1 MHz	C _{rss}	-	4.9	-	pF
Gate charge total at V_{DS} = 325 V, V_{GS} = 10 V, I_D = 3.5 A	Qg	-	10	-	nC
Gate to Source Charge at V_{DS} = 325 V, V_{GS} = 10 V, I_D = 3.5 A	Q_{gs}	-	2.7	-	nC
Gate to Drain Charge at V_{DS} = 325 V, V_{GS} = 10 V, I_D = 3.5 A	Q_{gd}	-	3.6	-	nC
Turn-On Delay Time at V_Ds = 323 V, V_Gs = 10 V, I_D = 3.5 A, R_G = 24 Ω	$t_{d(on)}$	-	22	-	ns
Turn-On Rise Time at V_Ds = 323 V, V_Gs = 10 V, I_D = 3.5 A, R_G = 24 Ω	tr	-	14	-	ns
Turn-Off Delay Time at V_Ds = 323 V, V_Gs = 10 V, I_D = 3.5 A, R_G = 24 Ω	$t_{d(off)}$	-	17	-	ns
Turn-Off Fall Time at V_Ds = 323 V, V_Gs = 10 V, I_D = 3.5 A, R_G = 24 Ω	t _f	-	51	-	ns
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at Is = 1 A, V _{GS} = 0 V	V _{SD}	-	-	1.4	V
Body-Diode Continuous Current	ls	-	-	4.8	А
Body-Diode Continuous Current, Pulsed	Ism	-	-	20	А
Body Diode Reverse Recovery Time at I _s = 3.5 A, di/dt = 100 A / μs	t _{rr}	-	275	-	ns
Body Diode Reverse Recovery Charge at I _s = 3.5 A, di/dt = 100 A / μs	Qrr	-	1.5	-	μC




Electrical Characteristics Curves

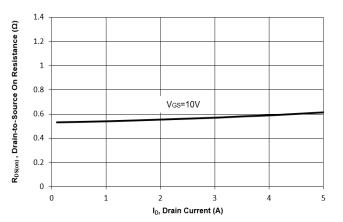


Fig. 1 Typical Output Characteristics

Fig. 2 Typical Transfer Characteristics

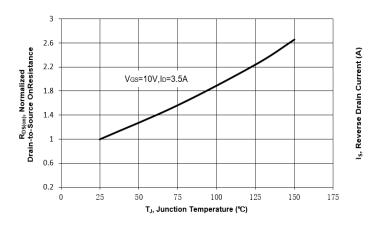


Fig. 4 On-Resistance vs. Gate Voltage

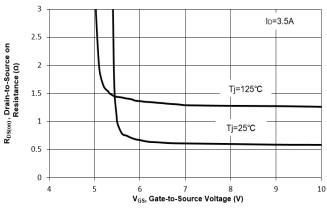
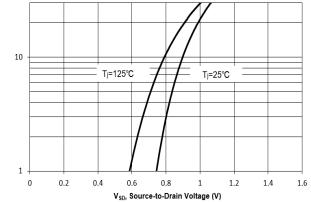
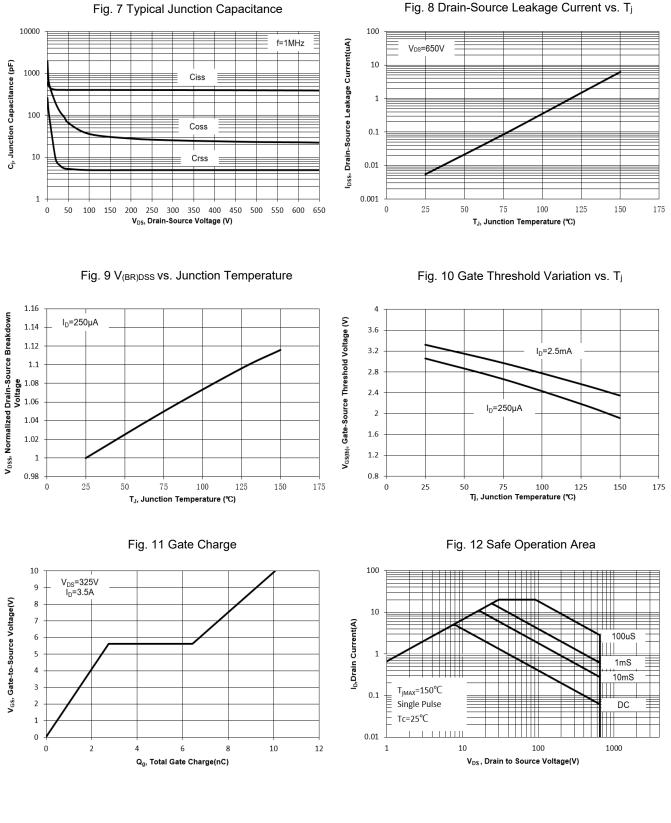




Fig. 6 Typical Body-Diode Forward Characteristics

Electrical Characteristics Curves

4/8

Fig. 8 Drain-Source Leakage Current vs. Tj

Electrical Characteristics Curves

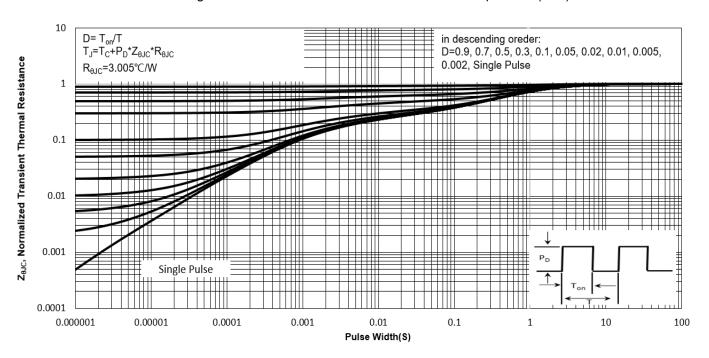
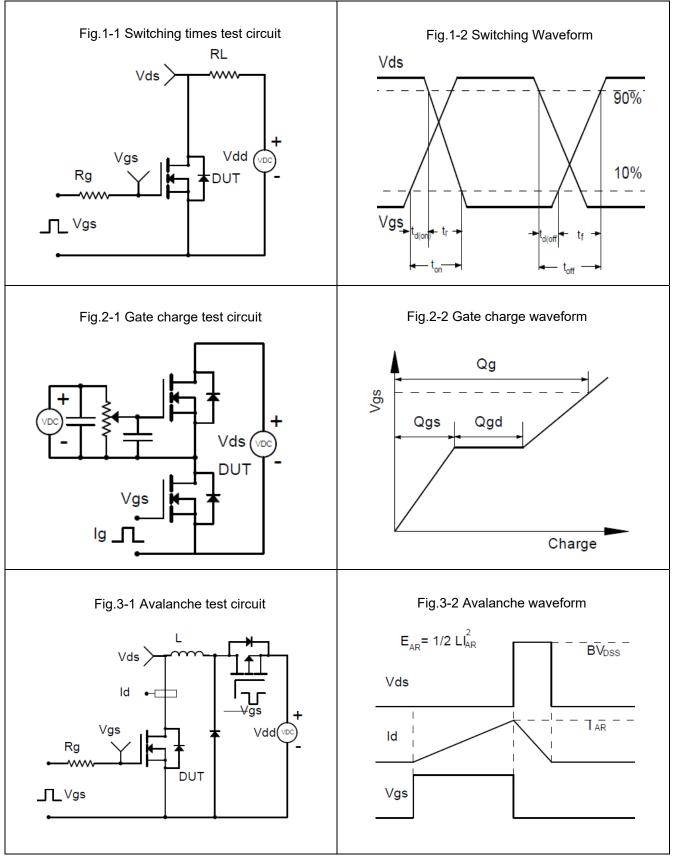
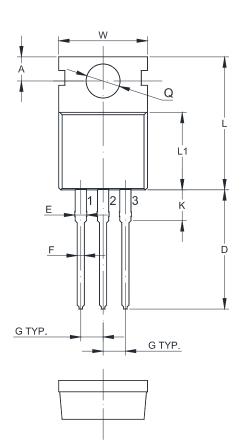
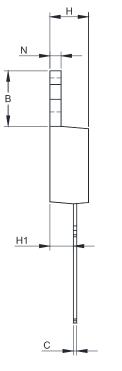


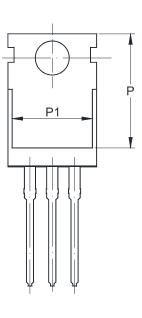

Fig.13 Normalized Maximum Transient Thermal Impedance(zeuc)


Fig.14 Normalized Maximum Transient Thermal Impedance(z_{BJA})

WPCT65N640-HAF


Test Circuits





Package Outline Dimensions (Units: mm)

TO-220FB

UNIT	Α	В	С	D	E	F	G	W	Н	H1	K	L	L1	Ν
	2.9	6.8	0.7	15	1.5	0.9	2.54	10.2	4.7	2.5	3.1	16.8	9.4	1.4
mm	2.7	6.4	0.3	11	1.1	0.7	TYP.	9.8	4.3	2.2	2.7	14.8	9.0	1.2

UNIT	Р	P1	Q		
mm	13.3	8.2	3.7		
	12.7	7.6	3.5		

Marking information

" PCT65N640 " = Part No. " ****** " = Date Code Marking Font type: Arial

IMPORTANT NOTICE

Our company and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability without further notice to this document and any product described herein.

Statements described herein regarding the reliability and suitability of products is for illustrative purposes only. Products specifically described herein are not authorized for use as critical components in life support devices, automobile, military, aviation or aerospace only with the written approval of our company.

The information contained herein is presented only as guidance for product use. No license to any intellectual property rights is granted under this document. No responsibility is assumed by our company for any infringement of patents or any other intellectual property rights of third party that may result from the use of the product.

