N-Channel Enhancement Mode MOSFET

Features

- Low RDS(ON)
- Fully Characterized Capacitance and Avalanche
- Halogen and Antimony Free(HAF), **RoHS** compliant

Application

- Synchronous Rectification
- BLDC Motor drive applications
- · Battery powered circuits

Key Parameters

Value	Unit
100	V
17 @ V _{GS} = 10 V	~~ C
23 @ V _{GS} = 4.5 V	mΩ
2	V
22 @ V _{GS} = 10 V	nC
	$100 \\ 17 @ V_{GS} = 10 V \\ 23 @ V_{GS} = 4.5 V \\ 2$

Absolute Maximum Ratings (at Ta = 25°C unless otherwise specified)

•		• •		
Parameter		Symbol	Value	Unit
Drain-Source Voltage		V _{DS}	100	V
Gate-Source Voltage		V _{GS}	± 20	V
Continuous Drain Current	T _c = 25°C T _c = 100°C	ID	44 30	А
Peak Drain Current, Pulsed ¹⁾		I _{DM}	140	А
Avalanche Current		las	17.4	А
Single Pulse Avalanche Energy 2)		E _{AS}	15	mJ
Drain-Source Voltage, Spike (tp = 10 μs)		VSPIKE	120	V
Power Dissipation	T _c = 25°C T _a = 25°C	Ptot	62.5 3	W
Operating Junction and Storage Temperature	e Range	TJ, Tstg	- 55 to + 175	°C

Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Case	Rejc	2.4	°C/W
Thermal Resistance from Junction to Ambient ³⁾	R _{θJA}	50	°C/W

¹⁾ Pulse Test: Pulse Width \leq 100 µs, Duty Cycle \leq 2%, Repetitive rating, pulse width limited by junction temperature T_{J(MAX)} = 175°C.

 $^{2)}$ Limited by T_{J(MAX)}, starting T_J = 25 °C, L = 0.1 mH, R_g = 25 Ω , I_{AS} = 17.4 A, V_{GS} = 10 V.

³⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.

Drain

Source

Gate

1.Gate 2.Drain 3.Source TO-252 Plastic Package

WDR10N170LS-HAF

Characteristics at T_a = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at I _D = 1 mA	BV _{DSS}	100	-	-	V
Drain-Source Leakage Current at V _{DS} = 100 V	IDSS	-	-	1	μA
Gate Leakage Current at V _{GS} = ± 20 V	lgss	-	-	± 100	nA
Gate-Source Threshold Voltage at V _{DS} = V _{GS} , I _D = 250 μA	$V_{GS(th)}$	1.2	-	2.5	V
Drain-Source On-State Resistance at V_{GS} = 10 V, I_D = 7 A at V_{GS} = 4.5 V, I_D = 5 A	R _{DS(on)}	-	14 18.7	17 23	mΩ
DYNAMIC PARAMETERS					
Forward Transconductance at V_{DS} = 5 V, I_D = 7 A	g fs	-	16	-	S
Gate resistance at V _{GS} = 0 V, V _{DS} = 0 V, f = 1 MHz	Rg	-	0.6	-	Ω
Input Capacitance at V _{GS} = 0 V, V _{DS} = 40 V, f = 1 MHz	Ciss	-	1093	-	pF
Output Capacitance at V _{GS} = 0 V, V _{DS} = 40 V, f = 1 MHz	Coss	-	538	-	pF
Reverse Transfer Capacitance at V _{GS} = 0 V, V _{DS} = 40 V, f = 1 MHz	C _{rss}	-	69	-	pF
Gate charge total at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 7 A at V_{DS} = 50 V, V_{GS} = 4.5 V, I_D = 7 A	Qg	-	22 12	-	nC
Gate to Source Charge at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 7 A	Q _{gs}	-	3	-	nC
Gate to Drain Charge at V _{DS} = 50 V, V _{GS} = 10 V, I _D = 7 A	Q_{gd}	-	6	-	nC
Turn-On Delay Time at V _{DS} = 50 V, V _{GS} = 10 V, I _D = 7 A, R _g = 4.7 Ω	t _{d(on)}	-	14	-	ns
Turn-On Rise Time at V _{DS} = 50 V, V _{GS} = 10 V, I _D = 7 A, R _g = 4.7 Ω	tr	-	8	-	ns
Turn-Off Delay Time at V _{DS} = 50 V, V _{GS} = 10 V, I _D = 7 A, R _g = 4.7 Ω	$t_{d(off)}$	-	14	-	ns
Turn-Off Fall Time at V _{DS} = 50 V, V _{GS} = 10 V, I _D = 7 A, R _g = 4.7 Ω	t _f	-	5	-	ns
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at I _S = 1 A, V _{GS} = 0 V	Vsd	-	-	1	V
Body-Diode Continuous Current	ls	-	-	44	А
Body-Diode Continuous Current, Pulsed	I _{SM}	-	-	140	А
Body Diode Reverse Recovery Time at I _S = 7 A, di/dt = 100 A / μs	t _{rr}	-	37	-	ns
Body Diode Reverse Recovery Charge at I _S = 7 A, di/dt = 100 A / μs	Qrr	-	32	-	nC

Electrical Characteristics Curves

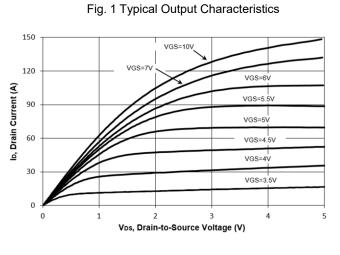


Fig. 3 On-Resistance vs. Drain Current

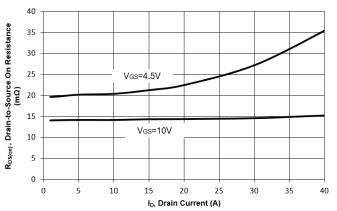


Fig. 5 on-Resistance vs.Ti

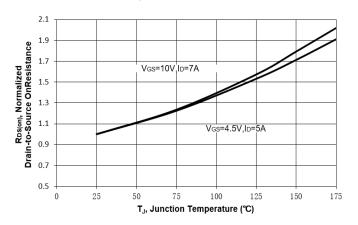


Fig. 2 Typical Transfer Characteristics

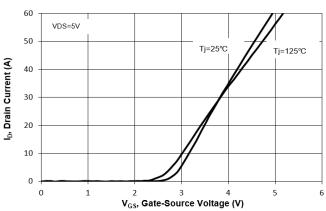
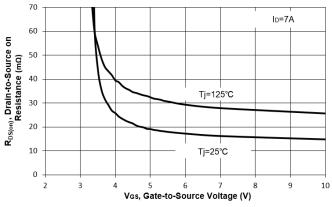
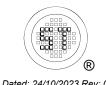
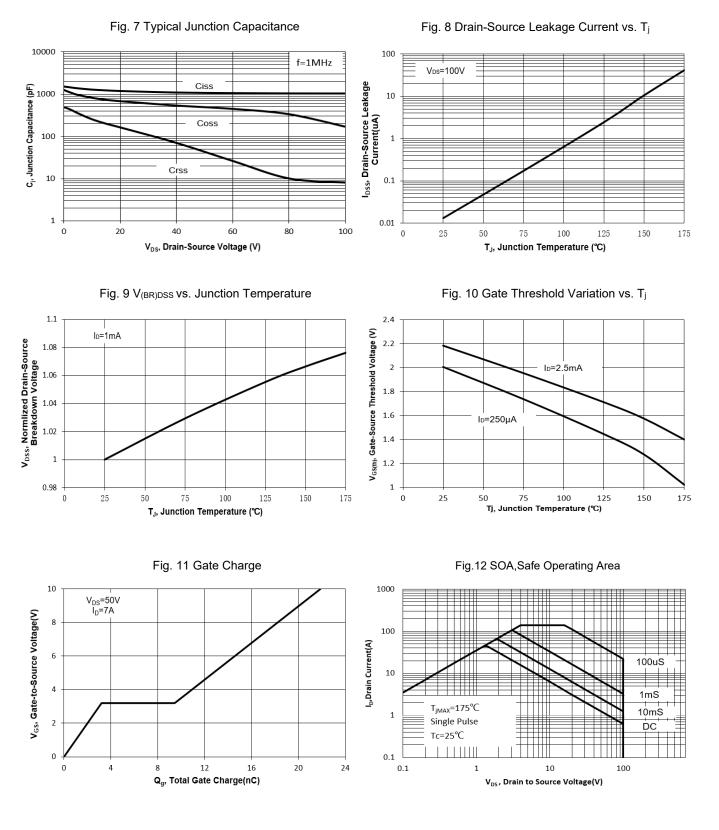


Fig. 4 on-Resistance vs. Gate to Source Voltage


Fig. 6 Typical Body-Diode Forward Characteristics

Dated: 24/10/2023 Rev: 06

Electrical Characteristics Curves

Dated: 24/10/2023 Rev: 06

Electrical Characteristics Curves

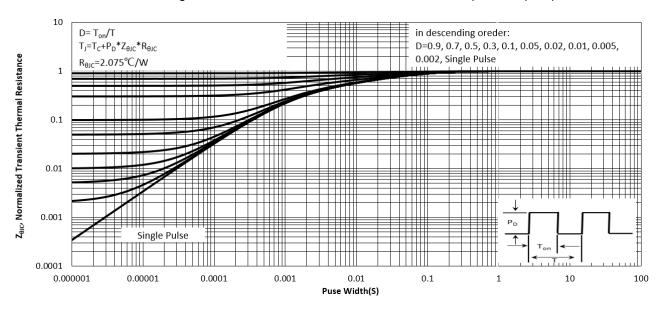
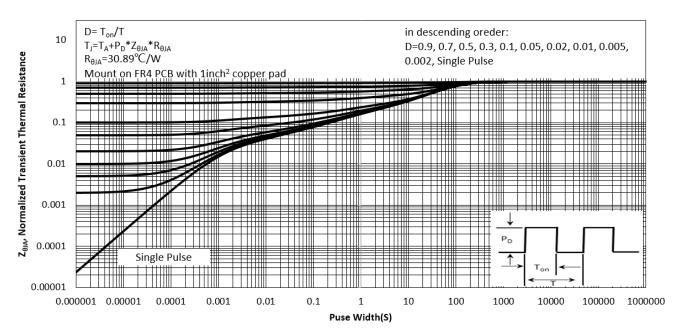
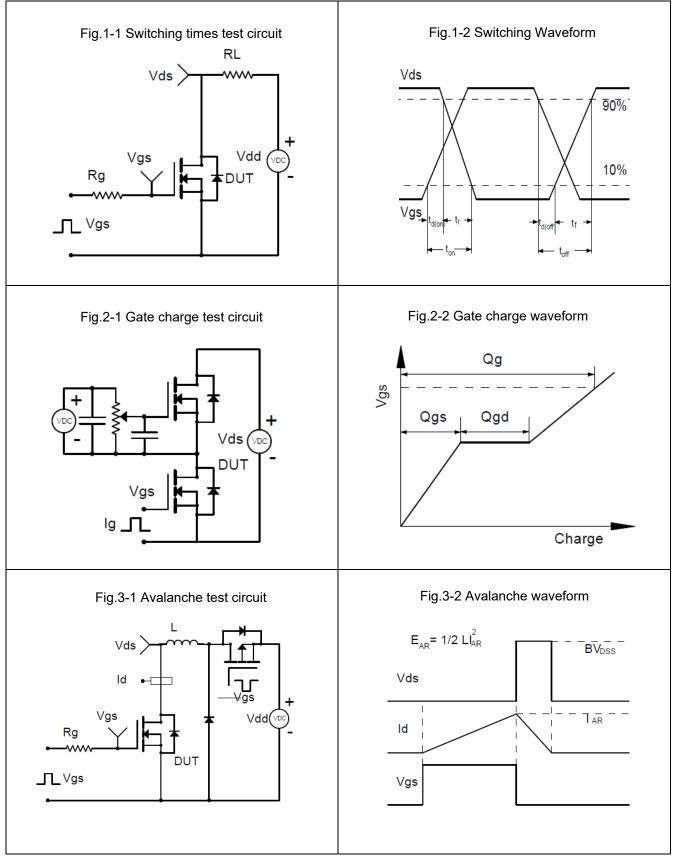
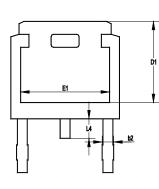
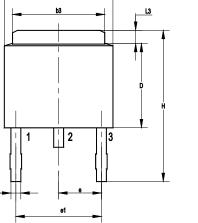



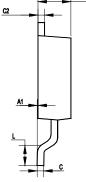
Fig. 13 Normalized Maximum Transient Thermal Impedance(z_{ΘJC})



WDR10N170LS-HAF

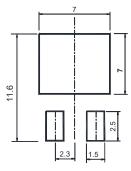

Test Circuits





WDR10N170LS-HAF

Package Outline (Dimensions in mm)



						-	-	-		-	-	-	-			-	
UNIT	А	A1	b	b2	b3	С	C2	D	D1	Е	E1	е	e1	н	L	L3	L4
	2.5	0.15	1.0	1.15	5.5	0.65	0.65	6.2	5.4	6.7	5.0	2.30	4.60	10.7	1.78	1.20	1.10
mm	2.1	0	0.5	0.65	4.9	0.4	0.4	5.6	5.0	6.1	4.6	TYP.	TYP.	9	1.40	0.85	0.51

Recommended Soldering Footprint

Packing information

Package	Tape Width	Pit	tch	Reel	Size	Per Reel Packing Quantity
Fackage	(mm)	mm	inch	mm	inch	
TO-252	16	8 ± 0.1	0.315 ± 0.004	330	13	2,500

Marking information

- " DR10N170LS " = Part No.
- " ****** " = Date Code Marking

Font type: Arial

DR10	
N170L	
\bigcirc	

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

TO-252