
N-Channel Enhancement Mode MOSFET

Features

- Low RDS(ON)
- Surface-mounted package
- Low Gate-Source Threshold Voltage
- Halogen and Antimony Free(HAF),
- RoHS compliant

1.Gate 2.Drain 3.Source TO-252 Plastic Package

Key Parameters

Parameter	Value	Unit	
BV _{DSS}	100	V	
Brazaw Max	9.5 @ V _{GS} = 10 V	mΩ	
R _{DS(ON)} Max	13 @ V _{GS} = 4.5 V		
V _{GS(th)} typ	1.6	V	
Q _g typ	38 @ V _{GS} = 10 V	nC	

Absolute Maximum Ratings(at Ta = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	V _G s	± 20	V	
Drain Current T	ID	56 39	А	
Peak Drain Current, Pulsed ¹⁾	IDM	200	А	
Avalanche Current	I _{AS}	16.8	А	
Single Pulse Avalanche Energy 2)	Eas	70.5	mJ	
Total Power Dissipation T	P _{tot}	57.6	W	
Operating Junction and Storage Temperature R	T _J , T _{stg}	- 55 to + 175	C°	

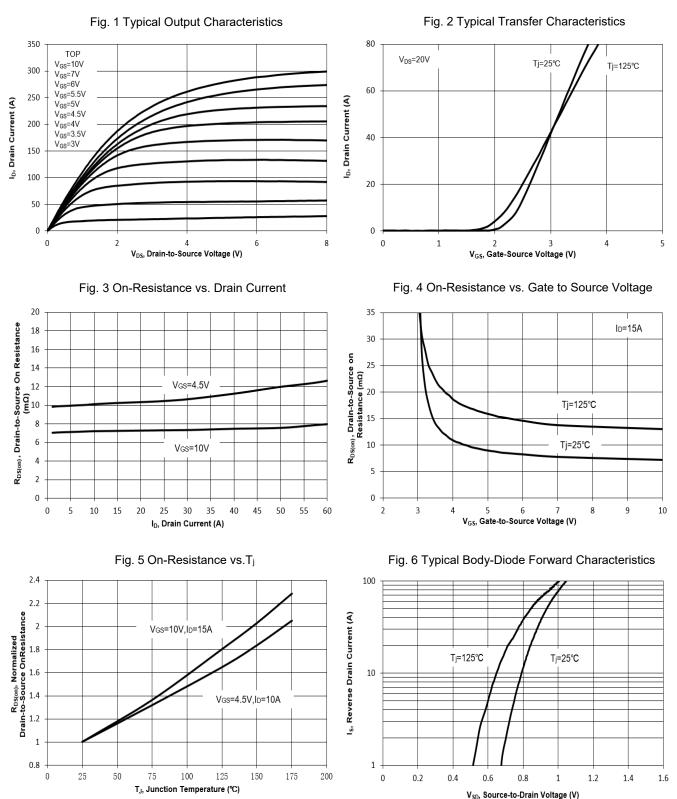
Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Case	R _{θJC}	2.6	°C/W
Thermal Resistance from Junction to Ambient ³⁾	R _{θJA}	35	°C/W

¹⁾ Pulse Test: Pulse Width \leq 100 µs, Duty Cycle \leq 2%, Repetitive rating, pulse width limited by junction temperature T_{J(MAX)} = 175°C.

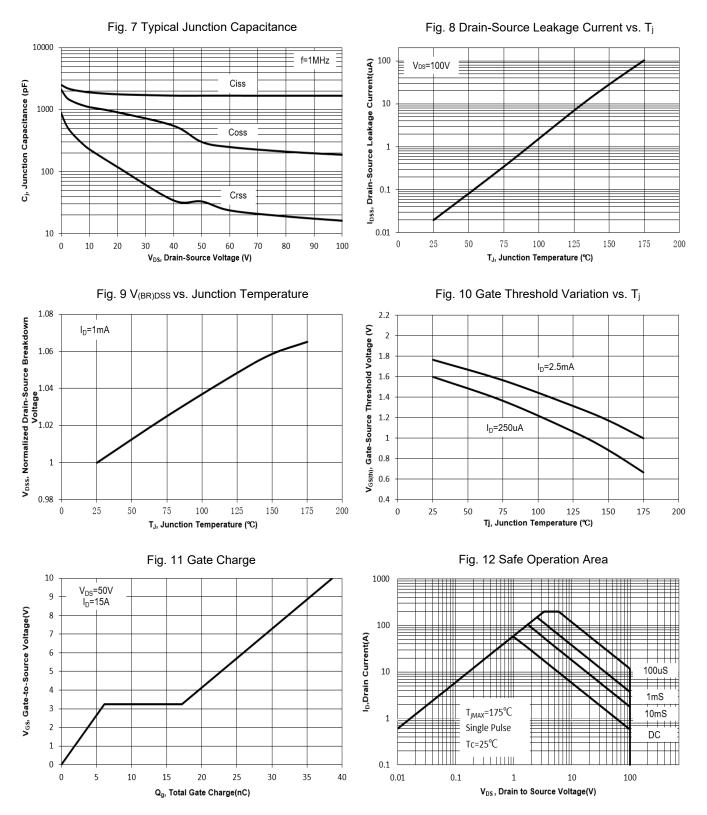
 $^{2)}$ Limited by $T_{J(MAX)},$ starting T_{J} = 25°C, L = 0.5 mH, R_{g} = 25 $\Omega,$ I_{AS} = 16.8 A, V_{GS} = 10 V.

³⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.


WDR10N090LS-HAF

Characteristics at Ta = 25°C unless otherwise specified

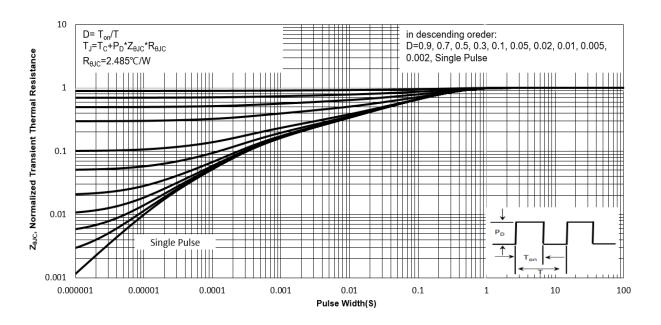
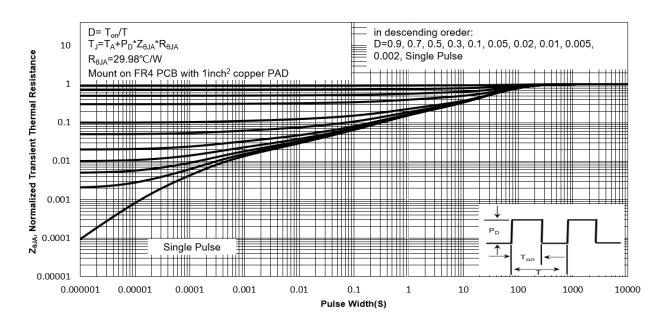
Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at I⊳ = 250 µA	BV _{DSS}	100	-	-	V
Drain-Source Leakage Current at V _{DS} = 80 V	IDSS	-	-	1	μA
Gate Leakage Current at V _{GS} = ± 20 V	lgss	-	-	± 100	nA
Gate-Source Threshold Voltage at V _{DS} = V _{GS} , I _D = 250 μA	V _{GS(th)}	1.2	-	2.5	V
Drain-Source On-State Resistance at V _{GS} = 10 V, I_D = 15 A at V _{GS} = 4.5 V, I_D = 10 A	R _{DS(on)}	-	7.5 -	9.5 13	mΩ
DYNAMIC PARAMETERS					
Forward Transconductance at V_{DS} = 5 V, I_D = 10 A	g fs	-	28.7	-	S
Gate Resistance at V_{GS} = 0 V, V_{DS} = 0 V, f = 1 MHz	Rg	-	0.8	-	Ω
Input Capacitance at V _{GS} = 0 V, V _{DS} = 50 V, f = 1 MHz	Ciss	-	1685	-	pF
Output Capacitance at V_{GS} = 0 V, V_{DS} = 50 V, f = 1 MHz	Coss	-	307	-	pF
Reverse Transfer Capacitance at V _{GS} = 0 V, V _{DS} = 50 V, f = 1 MHz	Crss	-	24	-	pF
Gate charge total at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 15 A at V_{DS} = 50 V, V_{GS} = 4.5 V, I_D = 15 A	Qg	-	38 20	-	nC
Gate to Source Charge at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 15 A	Q _{gs}	-	5.6	-	nC
Gate to Drain Charge at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 15 A	Q_{gd}	-	11	-	nC
Turn-On Delay Time at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 15 A, R_g = 3.3 Ω	t _{d(on)}	-	14.5	-	ns
Turn-On Rise Time at V _{DS} = 50 V, V _{GS} = 10 V, I _D = 15 A, R _g = 3.3 Ω	tr	-	15.5	-	ns
Turn-Off Delay Time at V _{DS} = 50 V, V _{GS} = 10 V, I _D = 15 A, R _g = 3.3 Ω	$t_{d(off)}$	-	15	-	ns
Turn-Off Fall Time at V _{DS} = 50 V, V _{GS} = 10 V, I _D = 15 A, R _g = 3.3 Ω	t _f	-	4	-	ns
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at Is = 1 A, V _{GS} = 0 V	Vsd	-	-	1	V
Body-Diode Continuous Current	ls	-	-	56	Α
Body-Diode Continuous Current, Pulsed	I _{SM}	-	-	200	А
Body Diode Reverse Recovery Time at I_s = 15 A, di/dt = 100 A / μs	t _{rr}	-	40	-	ns
Body Diode Reverse Recovery Charge at Is = 15 A, di/dt = 100 A / μs	Qrr	-	38	-	nC

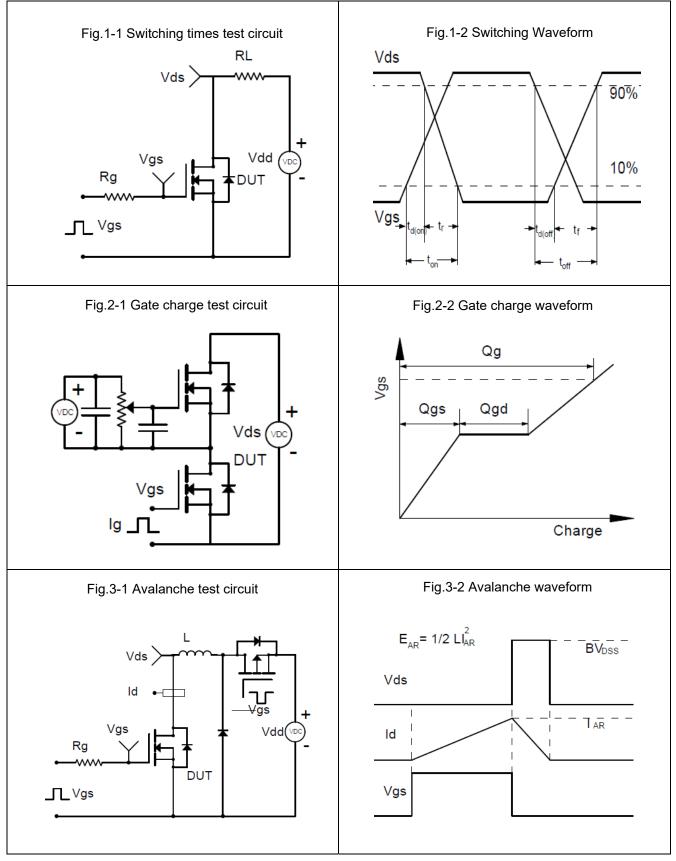


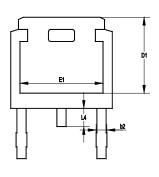
Electrical Characteristics Curves

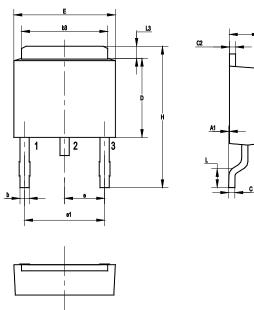
Electrical Characteristics Curves

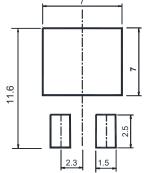
Electrical Characteristics Curves


Fig. 14 Normalized Maximum Transient Thermal Impedance($z_{\Theta JA}$)


WDR10N090LS-HAF


Test Circuits


Package Outline (Dimensions in mm)

UNIT	Α	A1	b	b2	b3	С	C2	D	D1	E	E1	е	e1	Н	L	L3	L4
	2.5	0.15	1.0	1.15	5.5	0.65	0.65	6.2	5.4	6.7	5.0	2.30	4.60	10.7	1.78	1.20	1.10
mm	2.1	0	0.5	0.65	4.9	0.4	0.4	5.6	5.0	6.1	4.6	TYP.	TYP.	9	1.40	0.85	0.51

Recommended Soldering Footprint

Packing information

Deekege Tape Width		Pit	tch	Reel	Size	Der Beel Beeking Quentity				
Гаскауе	Package (mm)		inch	mm	inch	Per Reel Packing Quantity				
TO-252	16	8 ± 0.1	0.315 ± 0.004	330	13	2,500				

Marking information

- " DR10N090LS " = Part No.
- " ****** " = Date Code Marking Font type: Arial

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

A