N-Channel Enhancement Mode MOSFET

Features

- Low R_{DS(on)}
- Low Miller Capacitance
- Fully Characterized Capacitance and Avalanche
- Halogen and Antimony Free(HAF), RoHS compliant

Application

- BLDC Motor drive applications
- Battery powered circuits
- Synchronous rectifier applications
- Resonant mode power supplies

Key Parameters

Parameter	Value	Unit		
BV _{DSS}	100	V		
Dearson Max	4.8 @ V _{GS} = 10 V			
RDS(ON) MAX	6.3 @ V _{GS} = 4.5 V	11122		
V _{GS(th)} typ	1.7	V		
Q _g typ	75 @ V _{GS} = 10 V	nC		

Absolute Maximum Ratings (at T_a = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	V _{GS}	± 20	V	
Continuous Drain Current $T_c = 25^{\circ}C$ $T_c = 100^{\circ}C$	ID	57 36	А	
Peak Drain Current, Pulsed ¹⁾	Ідм	400	А	
Avalanche Current	las	24	А	
Single Pulse Avalanche Energy ²⁾	Eas	144	mJ	
Power Dissipation T _c = 25°C	PD	27.2	W	
Operating Junction and Storage Temperature Range	TJ, Tstg	- 55 to + 150	C	

Thermal Characteristics

Parameter	Symbol	Max.	Unit	
Thermal Resistance from Junction to Case	R _{θJC}	4.6	°C/W	
Thermal Resistance from Junction to Ambient	Reja	43	°C/W	

¹⁾ Pulse Test: Pulse Width ≤ 100 μs, Duty Cycle ≤ 2%, Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. ²⁾ Limited by $T_{J(MAX)}$, starting T_J = 25 °C, L = 0.5 mH, R_g = 25 Ω, I_D = 24 A, V_{GS} = 10 V.

Source 3

Drain

Gate

1.Gate 2.Drain 3.Source TO-220F Plastic Package

WDAT10N040LS-HAF

Characteristics at Ta = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at I₂ = 250 µA	BV _{DSS}	100	-	-	V
Drain-Source Leakage Current at V _{DS} = 100 V	IDSS	-	-	1	μΑ
Gate Leakage Current at $V_{GS} = \pm 20 \text{ V}$	lgss	-	-	± 100	nA
Gate-Source Threshold Voltage at V_{DS} = V_{GS} , I_D = 250 μ A	$V_{GS(th)}$	1.2	-	2.4	V
Drain-Source On-State Resistance at V _{GS} = 10 V, I_D = 50 A at V _{GS} = 4.5 V, I_D = 20 A	R _{DS(on)}	- -	4.8 6.3	mΩ	
DYNAMIC PARAMETERS					
Forward Transconductance at $V_{DS} = 5 \text{ V}$, $I_D = 30 \text{ A}$	g fs	-	104	-	S
Gate Resistance at V_{GS} = 0 V, V_{DS} = 0 V, f = 1 MHz	Rg	-	1	-	Ω
Input Capacitance at V_{GS} = 0 V, V_{DS} = 50 V, f = 1 MHz	Ciss	-	3742	-	pF
Output Capacitance at V_{GS} = 0 V, V_{DS} = 50 V, f = 1 MHz	Coss	-	698	-	pF
Reverse Transfer Capacitance at V _{GS} = 0 V, V _{DS} = 50 V, f = 1 MHz	Crss	-	34	-	pF
Gate charge total at V_{DS} = 50 V, I_D = 50 A, V_{GS} = 10 V at V_{DS} = 50 V, I_D = 50 A, V_{GS} = 4.5 V	Qg	-	75 40		nC
Gate to Source Charge at V_{DS} = 50 V, I_D = 50 A, V_{GS} = 10 V	Q _{gs}	-	14	-	nC
Gate to Drain Charge at V_{DS} = 50 V, I _D = 50 A, V _{GS} = 10 V	Q_{gd}	-	22	-	nC
Turn-On Delay Time at V _{DS} = 50 V, I _D = 50 A, V _{GS} = 10 V, R _g = 3.3 Ω	t _{d(on)}	-	26	-	nS
Turn-On Rise Time at V _{DS} = 50 V, I _D = 50 A, V _{GS} = 10 V, R _g = 3.3 Ω	tr	-	43	-	nS
Turn-Off Delay Time at V _{DS} = 50 V, I _D = 50 A, V _{GS} = 10 V, R _g = 3.3 Ω	$t_{d(off)}$	-	23	-	nS
Turn-Off Fall Time at V _{DS} = 50 V, I _D = 50 A, V _{GS} = 10 V, R _g = 3.3 Ω	t _f	-	8	-	nS
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at Is = 1 A, V _{GS} = 0 V	V _{SD}	-	-	1.3	V
Body-Diode Continuous Current	ls	-	-	57	A
Body-Diode Continuous Current, Pulsed	lsм	-	-	400	A
Body Diode Reverse Recovery Time at Is = 50 A, V _{DD} = 50 V, di/dt = 200 A / μs	t _{rr}	-	48	-	nS
Body Diode Reverse Recovery Charge at Is = 50 A, V _{DD} = 50 V, di/dt = 200 A / µs	Qrr	-	106	-	nC

Electrical Characteristics Curves

Fig. 2 Typical Transfer Characteristics

Dated: 09/08/2021 Rev: 02

Electrical Characteristics Curves

Dated: 09/08/2021 Rev: 02

Electrical Characteristics Curves

WDAT10N040LS-HAF

Test Circuits

Package Outline Dimensions (Units: mm)

UNIT	А	С	D	Е	F	G	W	Н	H1	Q	L	L1	М	К	Ν
mm	3.5	0.7	10.3	1.5	0.9	2.54	10.5	4.9	2.9	3.4	16	13.5	3.5	6.7	2.8
	2.8	0.4	9.7	1.1	0.7	TYP.	9.5	4.5	2.5	2.9	15	12.5	2.9	6.2	2.3

Marking information

" DAT10N040LS " = Part No.

" ****** " = Date Code Marking Font type: Arial

IMPORTANT NOTICE

Our company and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability without further notice to this document and any product described herein.

Statements described herein regarding the reliability and suitability of products is for illustrative purposes only. Products specifically described herein are not authorized for use as critical components in life support devices, automobile, military, aviation or aerospace only with the written approval of our company.

The information contained herein is presented only as guidance for product use. No license to any intellectual property rights is granted under this document. No responsibility is assumed by our company for any infringement of patents or any other intellectual property rights of third party that may result from the use of the product.

