N-Channel Enhancement Mode MOSFET

Features

- Low Switching charge
- Low Miller Capacitance
- Halogen and Antimony Free(HAF), RoHS compliant

Gate Source

1.Gate 2.Drain 3.SourceTO-220F Plastic Package

Applications

- · Battery powered circuits
- Synchronous rectifier applications

Key Parameters

Parameter	Value	Unit		
BV _{DSS}	60	V		
R _{DS(ON)} Max	3 @ V _{GS} = 10 V	mΩ		
	3.6 @ V _{GS} = 4.5 V	11122		
V _{GS(th)} typ	1.5	V		
Q _g typ	91 @ V _{GS} = 10 V	nC		

Absolute Maximum Ratings (at Ta = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	60	V	
Gate-Source Voltage	V _G s	± 20	V	
Drain Current $T_c = 25$ $T_c = 100$	l ln	75 47	Α	
Peak Drain Current, Pulsed 1)	Івм	500	А	
Avalanche Current	I _{AS}	58.1	Α	
Single Pulsed Avalanche Energy 2)	Eas	168.7	mJ	
Power Dissipation T _c = 25	PD PD	26.7	W	
Operating Junction and Storage Temperature Range	T_{J}, T_{stg}	- 55 to + 150	°C	

Thermal Characteristics

Parameter	Symbol	Max.	Unit		
Thermal Resistance from Junction to Case	Rejc	4.6	°C/W		
Thermal Resistance from Junction to Ambient	Reja	45	°C/W		

 $^{^{1)}}$ Pulse Test: Pulse Width ≤ 100 μs, Duty Cycle ≤ 2%, Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ = 150°C.

 $^{^{2)}}$ Limited by $T_{J(MAX)},$ starting T_J = 25 °C, L = 0.1 mH, R_g = 25 $\Omega,$ I_D = 58.1 A, V_{GS} = 10 V.

WDAT06N022L-HAF

Characteristics at T_a = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at I _D = 250 μA	V _{(BR)DSS}	60	-	-	V
Drain-Source On-State Current at V_{DS} = 48 V	IDSS	-	-	10	μΑ
Gate-Source Leakage Current at V_{GS} = ± 20 V	lgss	-	-	± 100	nA
Gate-Source Threshold Voltage at V_{DS} = V_{GS} , I_D = 250 μ A	V _{GS(th)}	1	-	2.5	V
Drain-Source On-State Resistance at V_{GS} = 10 V, I_D = 50 A at V_{GS} = 4.5 V, I_D = 20 A	R _{DS(ON)}	- -	2.4	3 3.6	mΩ
DYNAMIC PARAMETERS					
Forward Transconductance at $V_{DS} = 5 \text{ V}$, $I_D = 50 \text{ A}$	g fs	-	62	-	S
Gate Resistance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	Rg	-	1	-	Ω
Input Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 30 \text{ V}$, $f = 1 \text{ MHz}$	C _{iss}	-	5174	-	pF
Output Capacitance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 30 \text{ V}$, $f = 1 \text{ MHz}$	Coss	-	2127	-	pF
Reverse Transfer Capacitance at V_{GS} = 0 V, V_{DS} = 30 V, f = 1 MHz	C _{rss}	-	40	-	pF
Total Gate Charge at V_{GS} = 10 V, V_{DS} = 30 V, I_D = 50 A at V_{GS} = 4.5 V, V_{DS} = 30 V, I_D = 50 A	Q_g	-	91 45	- -	nC
Gate-Source Charge at V_{GS} = 10 V, V_{DS} = 30 V, I_D = 50 A	Q _{gs}	-	16	-	nC
Gate-Drain Charge at V_{GS} = 10 V, V_{DS} = 30 V, I_D = 50 A	Q_{gd}	-	20	-	nC
Turn-On Delay Time at V_{GS} = 10 V, V_{DD} = 31 V, I_D = 50 A, R_g = 3.3 Ω	$t_{d(on)}$	-	33	-	ns
Turn-On Rise Time at V_{GS} = 10 V, V_{DD} = 31 V, I_D = 50 A, R_g = 3.3 Ω	t _r	-	73	-	ns
Turn-Off Delay Time at V_{GS} = 10 V, V_{DD} = 31 V, I_D = 50 A, R_g = 3.3 Ω	$t_{\text{d(off)}}$	-	31	-	ns
Turn-Off Fall Time at V_{GS} = 10 V, V_{DD} = 31 V, I_D = 50 A, R_g = 3.3 Ω	t _f	-	36	-	ns
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at $I_S = 1 A$, $V_{GS} = 0 V$	V _{SD}	-	-	1.2	V
Body-Diode Continuous Current	Is	-	-	75	Α
Body-Diode Continuous Current, Pulsed	I _{SM}	-	-	500	Α
Body Diode Reverse Recovery Time at I _S = 30 A, di/dt = 100 A / μs	t _{rr}	-	54	-	ns
Body Diode Reverse Recovery Charge at $I_S = 30 \text{ A}$, di/dt = 100 A / μs	Qrr	-	65	-	nC

Electrical Characteristics Curves

Fig. 1 Typical Output Characteristics

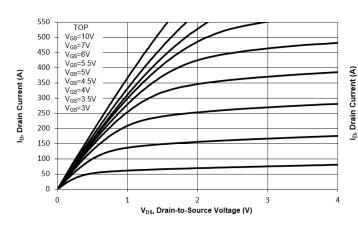


Fig. 2 Typical Transfer Characteristics

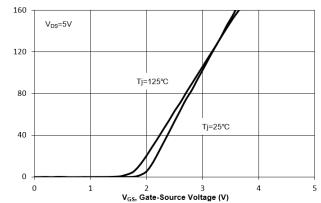


Fig. 3 On-Resistance vs. Drain Current

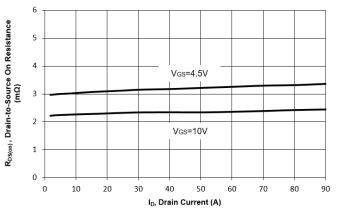


Fig. 4 On-Resistance vs. Gate Voltage

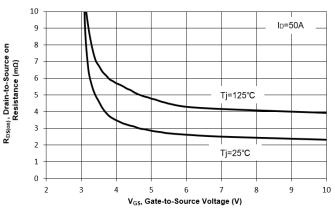


Fig. 5 On-Resistance vs.T_j

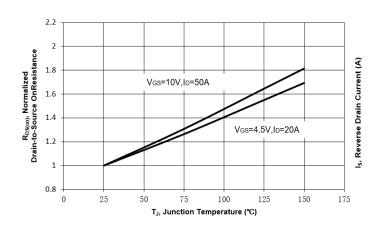
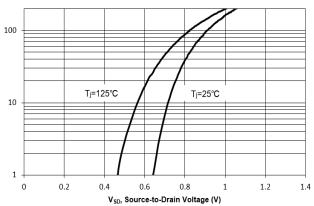



Fig. 6 Typical Body-Diode Forward Characteristics

3/8

Electrical Characteristics Curves

Fig. 7 Typical Junction Capacitance

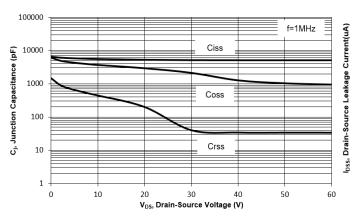


Fig. 8 Drain-Source Leakage Current vs. Tj

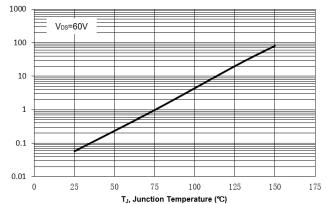


Fig. 9 V_{(BR)DSS} vs. Junction Temperature

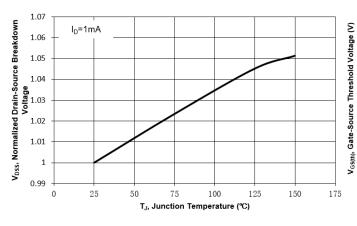


Fig. 10 Gate Threshold Variation vs. T_j

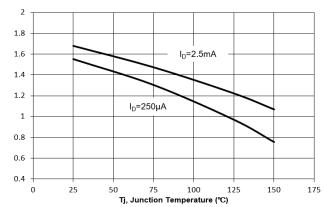


Fig. 11 Gate Charge

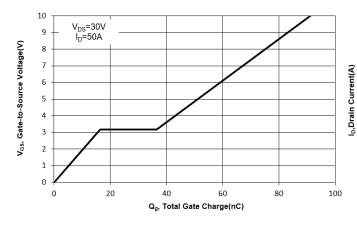
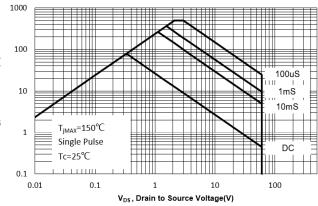



Fig. 12 Safe Operation Area

Electrical Characteristics Curves

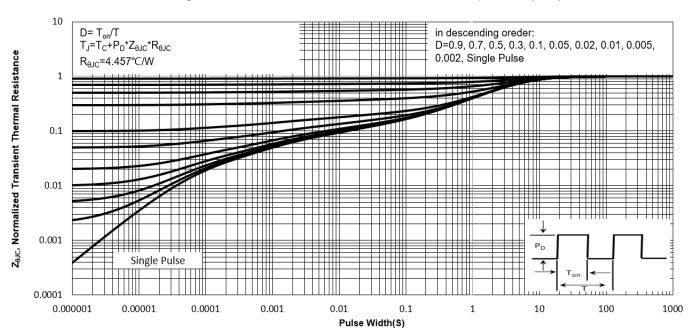
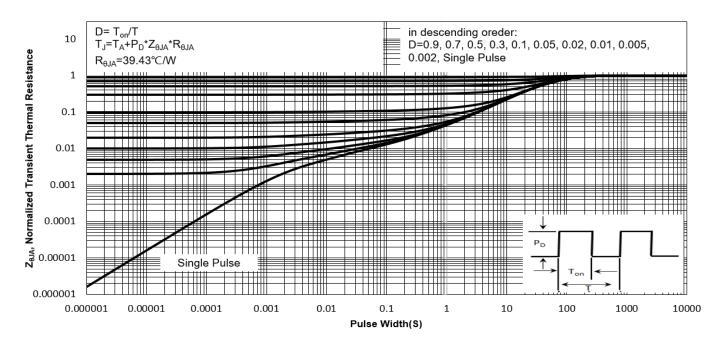



Fig. 13 Normalized Maximum Transient Thermal Impedance(zeuc)

Test Circuits

Fig.1-1 Switching times test circuit



Fig.1-2 Switching Waveform

Vds

10%

Vgs

t_{d(off} t_f + t_f

Fig.2-1 Gate charge test circuit

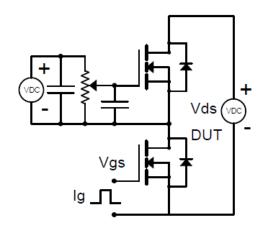


Fig.2-2 Gate charge waveform

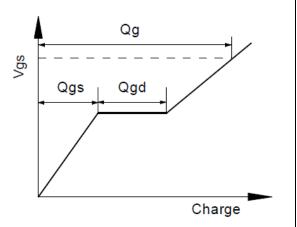
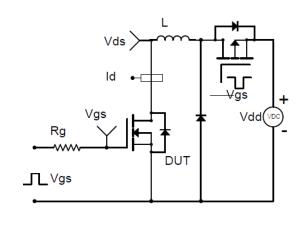
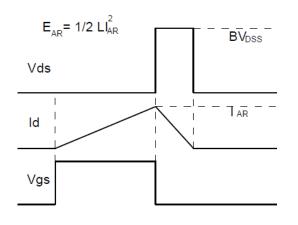
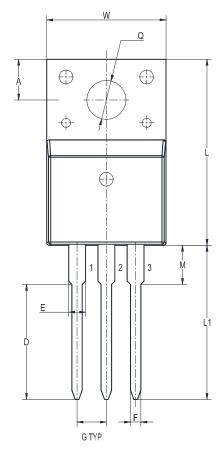
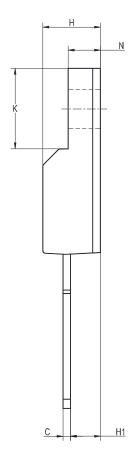


Fig.3-1 Avalanche test circuit

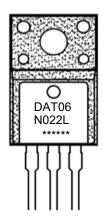




Fig.3-2 Avalanche waveform



Package Outline Dimensions (Units: mm)

TO-220F


UNIT	Α	С	D	Е	F	G	W	Н	H1	Q	L	L1	М	K	N
mm	3.5	0.7	10.3	1.5	0.9	2.54	10.5	4.9	2.9	3.4	16	13.5	3.5	6.7	2.8
	2.8	0.4	9.7	1.1	0.7	TYP	9.5	4.5	2.5	2.9	15	12.5	2.9	6.2	2.3

Marking information

" DAT06N022L " = Part No.

" ***** " = Date Code Marking

Font type: Arial

IMPORTANT NOTICE

Our company and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability without further notice to this document and any product described herein.

Statements described herein regarding the reliability and suitability of products is for illustrative purposes only. Products specifically described herein are not authorized for use as critical components in life support devices, automobile, military, aviation or aerospace only with the written approval of our company.

The information contained herein is presented only as guidance for product use. No license to any intellectual property rights is granted under this document. No responsibility is assumed by our company for any infringement of patents or any other intellectual property rights of third party that may result from the use of the product.

