NPN Silicon Power Darlington Transistor

Features

• Halogen and Antimony Free(HAF), RoHS compliant

Applications

• For power switching and amplifier

Absolute Maximum Ratings (T_a = 25 °C)

Parameter	Symbol	Value	Unit
Collector Base Voltage	Vсво	100	V
Collector Emitter Voltage	VCEO	100	V
Emitter Base Voltage	Vebo	5	V
Collector Current	lc	5	А
Collector Current (Pulse)	I _{CP}	8	А
Base Current	lв	0.12	А
Power Dissipation (T _a = 25 °C)	Pc	2	W
Power Dissipation (T₀ = 25 ºC)	Pc	15.6	W
Junction Temperature	Tj	150	٥C
Storage Temperature Range	Tstg	- 65 to + 150	٥C

Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Case	Rejc	8	°C/W
Thermal Resistance from Junction to Ambient	R _{0JA}	62.5	°C/W

1.Base 2.Colloctor 3.Emitter TO-220FB Plastic Package

Characteristics at $T_a = 25 \circ C$

Parameter	Symbol	Min.	Max.	Unit
DC Current Gain at $V_{CE} = 3 V$, $I_C = 0.5 A$ at $V_{CE} = 3 V$, $I_C = 3 A$	h _{FE}	1000 1000	-	
Collector Base Cutoff Current at V_{CB} = 100 V	Ісво	-	0.2	mA
Collector Emitter Cutoff Current at V _{CE} = 50 V	ICEO	-	0.5	mA
Emitter Base Cutoff Current at $V_{EB} = 5 V$	I _{EBO}	-	2	mA
Collector Base Breakdown Voltage at Ic = 1 mA	V _{(BR)CBO}	100	-	V
Collector Emitter Sustaining Voltage at Ic = 30 mA	$V_{CEO(sus)}$	100	-	V
Emitter Base Breakdown Voltage at I _E = 1 mA	V _{(BR)EBO}	5	-	V
Collector Emitter Saturation Voltage at $I_C = 3 A$, $I_B = 12 mA$ at $I_C = 5 A$, $I_B = 20 mA$	V _{CE(sat)}	-	2 4	V
Base Emitter On Voltage at V _{CE} = 3 V, I _C = 3 A	V _{BE(on)}	-	2.5	V

Electrical Characteristics Curves

Fig. 1 Output Characteristics Curve

Fig. 2 Collector Current vs. Base to Emitter Voltage

Fig. 3 DC Current Gain vs. Collector Current

Fig. 4 VBESAT vs. Collector Current

Electrical Characteristics Curves

Fig. 5 V_{CESAT} vs. Collector Current

Fig. 6 Output Capacitance

Fig 7. Power Derating Curve

Package Outline Dimensions (Units: mm)

TO-220FB

UNIT	Α	В	С	D	E	F	G	W	Н	H1	K	L	L1	Ν
	2.9	6.8	0.7	15	1.5	0.9	2.54	10.2	4.7	2.5	3.1	16.8	9.4	1.4
mm	2.7	6.4	0.3	11	1.1	0.7	TYP.	9.8	4.3	2.2	2.7	14.8	9.0	1.2

С

H1

UNIT	Р	P1	Q	
100 100	13.3	8.2	3.7	
	12.7	7.6	3.5	

Packing information

Package	Carton Quantity	Box Quantity	Base Quantity	Delivery Mode
TO-220FB	5 K / Carton	1 K / Box	50 pcs / Tube	Tube

Marking information	
" TIP122 " = Part No. " **** " = Date Code Marking	O TIP122 ****
Font type: Arial	

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

5/5