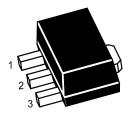

N-Channel Enhancement Mode MOSFET


Features

- AEC-Q101 Qualified
- Extremely low threshold voltage
- Halogen and Antimony Free(HAF),
 RoHS compliant

Applications

- Portable appliances
- · Battery management
- · High speed switch

1.Gate 2.Drain 3.Source SOT-89 Plastic Package

Absolute Maximum Ratings (at T_a = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit		
Drain-Source Voltage	V _{DS}	100	V		
Gate-Source Voltage	V _G s	± 20	V		
Drain Current $T_c = 25^{\circ}\text{C}$ $T_a = 25^{\circ}\text{C}$	I _D	6 3	А		
Peak Drain Current, Pulsed 1)	I _{DM}	20	Α		
Total Power Dissipation 2)	P _{tot}	2	W		
Operating Junction and Storage Temperature Range	T _j , T _{stg}	- 55 to + 150	°C		

Thermal Resistance Ratings

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Ambient 2)	Reja	62.5	°C/W
Thermal Resistance from Junction to Case	Rejc	13	°C/W

¹⁾ Pulse width \leq 10 μ s, duty cycle \leq 1 %.

²⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.

MU10N160L-CH

Characteristics at T_a = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at I _D = 250 μA	V _{(BR)DSS}	100	-	-	V
Zero Gate Voltage Drain Current at V _{DS} = 80 V	I _{DSS}	-	-	1	μΑ
Gate-Source Leakage at V _{GS} = ± 16 V	Igss	-	-	± 100	nA
Gate-Source Threshold Voltage at V_{DS} = V_{DS} , I_D = 250 μ A	V _{GS(th)}	1.3	-	2.5	V
Drain-Source On-State Resistance at V_{GS} = 10 V, I_D = 6 A at V_{GS} = 4.5 V, I_D = 4 A	R _{DS(on)}	- -	- -	150 160	mΩ
DYNAMIC PARAMETERS					
Forward Transconductance at $V_{DS} = 5 \text{ V}$, $I_D = 4 \text{ A}$	g _{Fs}	-	9.8	-	S
Gate Resistance at $V_{DS} = 0 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	Rg	-	1.1	-	Ω
Input Capacitance at $V_{DS} = 50 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	Ciss	-	1155	-	pF
Output Capacitance at V_{DS} = 50 V, V_{GS} = 0 V, f = 1 MHz	Coss	-	28	-	pF
Reverse Transfer Capacitance at $V_{DS} = 50 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	Crss	-	25	-	pF
Gate Charge Total at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 4 A at V_{DS} = 50 V, V_{GS} = 4.5 V, I_D = 4 A	Qg	- -	20 9	- -	nC
Gate to Source Charge at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 4 A	Q _{gs}	-	4	-	nC
Gate to Drain Charge at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 4 A	Q _{gd}	-	2.4	-	nC
Turn-On Delay Time at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 4 A, R_g = 3.3 Ω	t _{d(on)}	-	14	-	ns
Turn-On Rise Time at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 4 A, R_g = 3.3 Ω	t _r	-	4	-	ns
Turn-Off Delay Time at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 4 A, R_g = 3.3 Ω	t _{d(off)}	-	13	-	ns
Turn-Off Fall Time at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 4 A, R_g = 3.3 Ω	t _f	-	2	-	ns
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at $V_{GS} = 0 \text{ V}$, $I_S = 1 \text{ A}$	V _{SD}	-	-	1.3	V
Body-Diode Continuous Current	Is	-	-	3	Α
Body Diode Reverse Recovery Time at $I_S = 4 \text{ A}$, di/dt = 100 A / μ s	t _{rr}	-	21	-	ns
Body Diode Reverse Recovery Charge at I_S = 4 A, di/dt = 100 A / μ s	Qrr	-	22	-	nC

Electrical Characteristics Curves

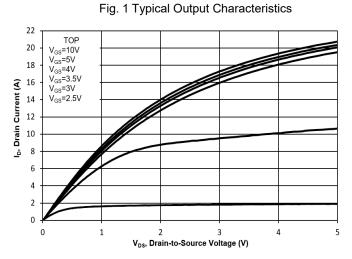


Fig. 2 Typical Transfer Characteristics

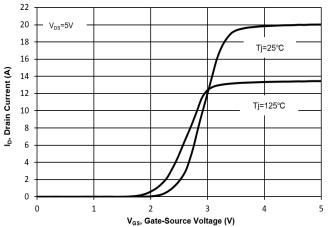


Fig. 3 On-Resistance vs. Drain Current

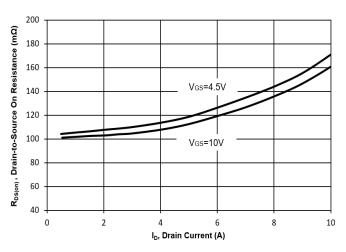


Fig. 4 On-Resistance vs. Gate-Source Voltage

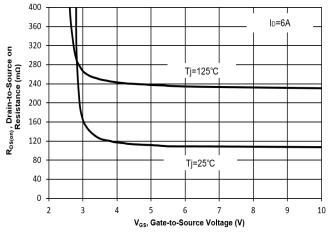


Fig. 5 On-Resistance vs.T_j

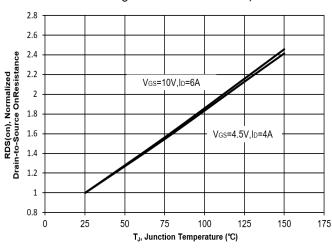
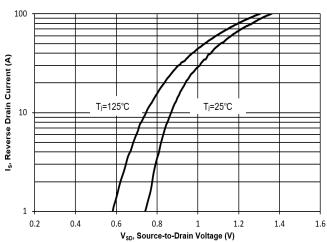



Fig. 6 Typical Body-Diode Forward Characteristics

Electrical Characteristics Curves

Fig. 7 Typical Junction Capacitance

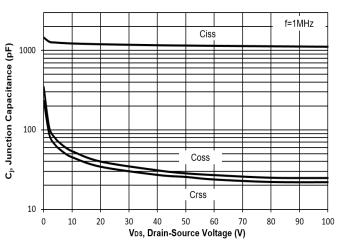


Fig. 8 Drain-Source Leakage Current vs. T_j

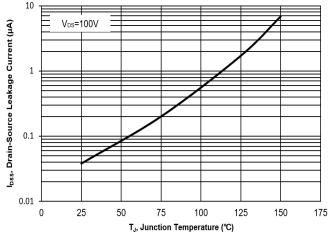


Fig. 9 $V_{(BR)DSS}$ vs. Junction Temperature

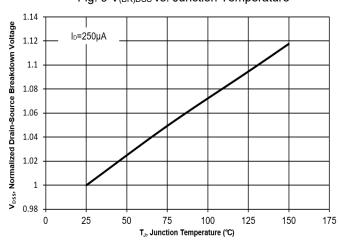


Fig. 10 Gate Threshold Variation vs. T_j

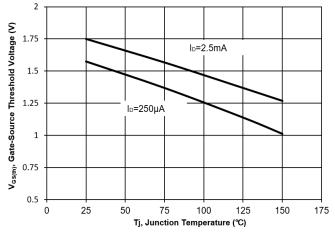
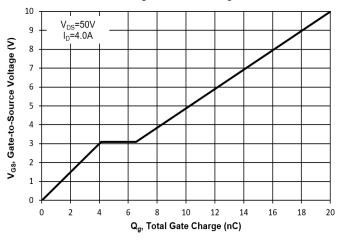
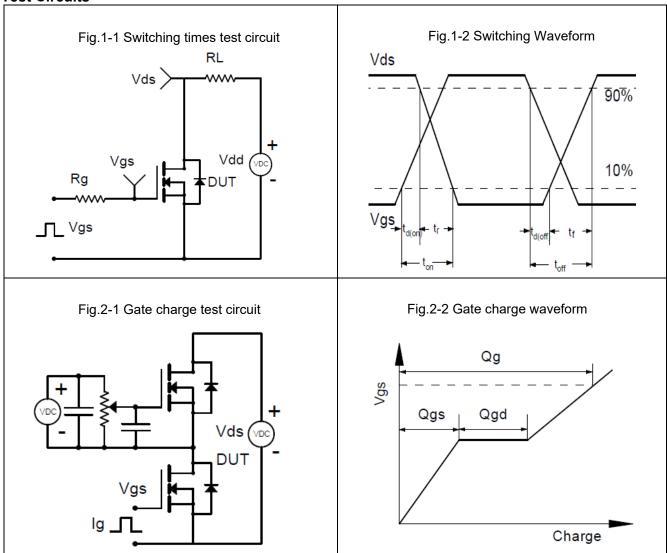
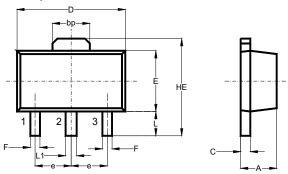
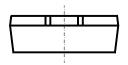
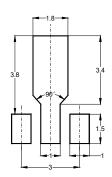




Fig. 11 Gate Charge



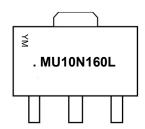

Test Circuits

Package Outline (Dimensions in mm)


SOT-89

Unit	Α	bp	С	D	E	F	HE	е	L	L1
	1.6	1.60	0.5	4.6	2.6	0.45	4.25	1.5	1.05	0.51
mm	1.4	1.50	0.3	4.4	2.4	0.35	3.75	typ.	0.95	0.41

Recommended Soldering Footprint


Packing information

1 dokting information							
	Tape Width (mm)	Pitch		Ree	el Size		
Package		mm	inch	mm	inch	Per Reel Packing Quantity	
207.00	40	0 : 0 4	0.045 + 0.004	178	7	1,000	
SOT-89	12	8 ± 0.1	0.315 ± 0.004	330	13	4,000	

Marking information

- " MU10N160L " = Part No.
- "•" = HAF (Halogen and Antimony Free)
- " YM " = Date Code Marking
- " Y " = Year
- " M " = Month

Font type: Arial

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

