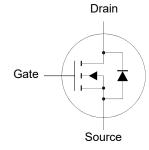
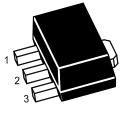
MU02N028US


N-Channel Enhancement Mode MOSFET


Features

· Extremely low threshold voltage

Applications

- Portable appliances
- Battery management

1.Gate 2.Drain 3.Source SOT-89 Plastic Package

Absolute Maximum Ratings (at Ta = 25°C unless otherwise specified)

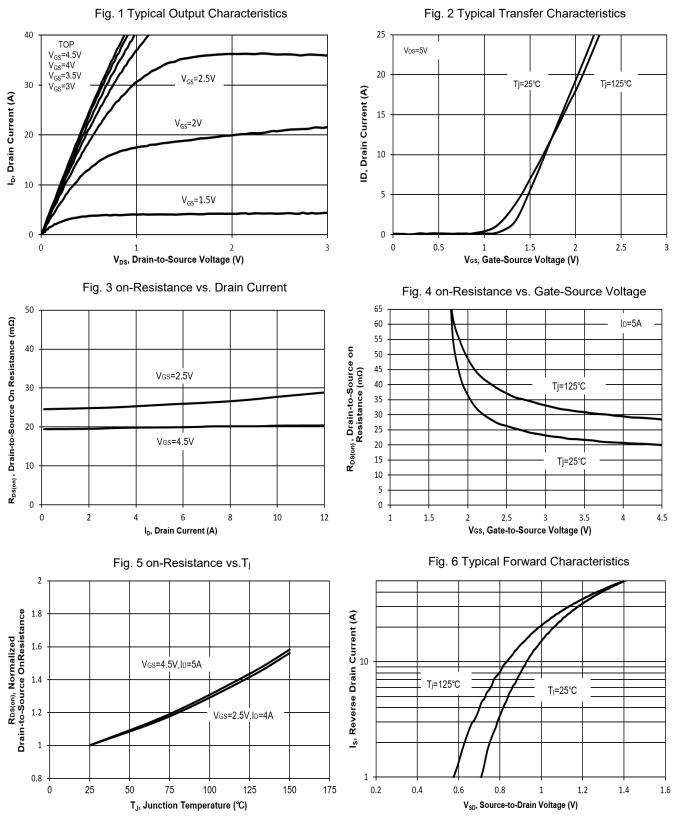
Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	20	V
Drain-Gate Voltage	V_{GS}	V _{GS} ± 12	
Drain Current	lD	5	А
Peak Drain Current, Pulsed ¹⁾	I _{DM}	20	А
Total Power Dissipation ²⁾	P _{tot}	1.5	W
Operating Junction Temperature	Tj	150	°C
Storage Temperature Range	T _{stg}	- 55 to + 150	C°

Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Ambient ²⁾	Reja	83.3	°C/W

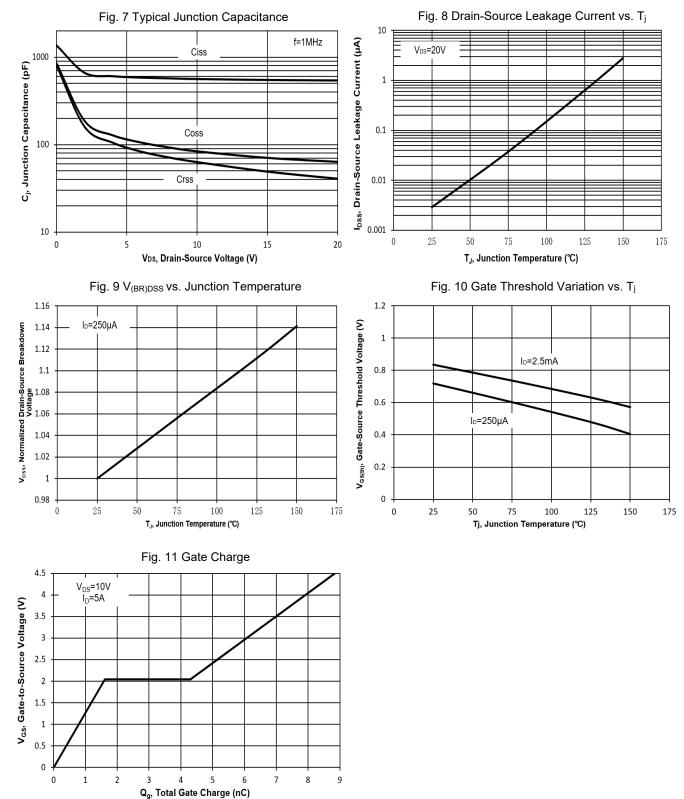
¹⁾ Pulse Test: Pulse Width \leq 100 µs, Duty Cycle \leq 2%, Repetitive rating, pulse width limited by junction temperature T_{J(MAX)} = 150°C.

²⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate, t \leq 10 s.

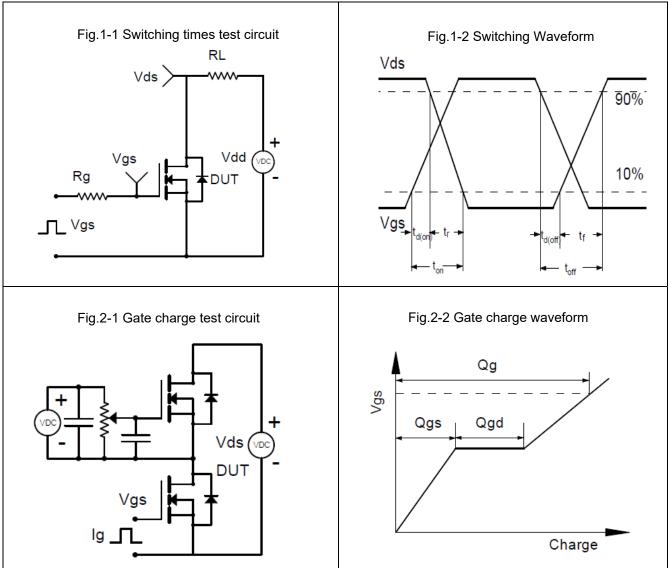


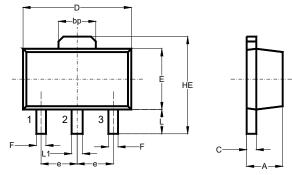
Characteristics at Ta = 25°C unless otherwise specified

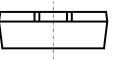
Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS	I				
Drain-Source Breakdown Voltage at $I_D = 250 \ \mu A$	V _{(BR)DSS}	20	-	-	V
Zero Gate Voltage Drain Current at V _{DS} = 16 V	IDSS	-	-	1	μA
Gate-Source Leakage at V _{GS} = ± 12 V	lgss	-	-	± 100	nA
Gate-Source Threshold Voltage at V_{GS} = V_{DS} , I_D = 250 μ A	V _{GS(th)}	0.4	-	1.0	V
Drain-Source On-State Resistance at V_{GS} = 4.5 V, I_D = 5 A at V_{GS} = 2.5 V, I_D = 4 A	RDS(on)	- -	25 -	28 31	mΩ
DYNAMIC PARAMETERS					
Forward Transconductance at V_{DS} = 5 V, I_D = 4 A	g fs	-	10	-	S
Gate Resistance at V _{GS} = 0 V, V _{DS} = 0 V, f = 1MHz	Rg	-	0.45	-	Ω
Input Capacitance at V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	Ciss	-	564	-	pF
Output Capacitance at V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	Coss	-	84	-	pF
Reverse Transfer Capacitance at $V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Crss	-	63	-	pF
Gate Charge Total at V_{DS} = 10 V, V_{GS} = 4.5 V, I_D = 5 A at V_{DS} = 10 V, V_{GS} = 2.5 V, I_D = 5 A	Qg	-	8.8 5		nC
Gate-Source Charge at V_{DS} = 10 V, V_{GS} = 4.5 V, I_D = 5 A	Q _{gs}	-	1.6	-	nC
Gate-Drain Charge at V_{DS} = 10 V, V_{GS} = 4.5 V, I_D = 5 A	Q _{gd}	-	2.7	-	nC
Turn-On Delay Time at V _{DD} = 10 V, V _{GS} = 4.5 V, I _D = 5 A, R _g = 3.3 Ω	t _{d(on)}	-	11	-	ns
Turn-On Rise Time at V _{DD} = 10 V, V _{GS} = 4.5 V, I _D = 5 A, R _g = 3.3 Ω	tr	-	29	-	ns
Turn-Off Delay Time at V_{DD} = 10 V, V_{GS} = 4.5 V, I_D = 5 A, R_g = 3.3 Ω	t _{d(off)}	-	12	-	ns
Turn-Off Fall Time at V _{DD} = 10 V, V _{GS} = 4.5 V, I _D = 5 A, R _g = 3.3 Ω	tf	-	2	-	ns
BODY DIODE PARAMETERS			i	i	İ
Drain-Source Diode Forward Voltage at V_{GS} = 0 V, I _S = 1 A	Vsd	-	-	1.2	V
Body-Diode Continuous Current	ls	-	-	5	A
Body Diode Reverse Recovery Time at Is = 5 A, di/dt = 100 A / μs	trr	-	10.5	-	ns
Body Diode Reverse Recovery Charge at I _s = 5 A, di/dt = 100 A / μs	Qrr	-	3.5	-	nC

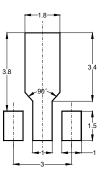


Electrical Characteristics Curves


Electrical Characteristics Curves


MU02N028US


Test Circuits


Package Outline (Dimensions in mm)

Unit	А	bp	С	D	E	F	HE	е	L	L1
2010	1.6	1.60	0.5	4.6	2.6	0.45	4.25	1.5	1.05	0.51
mm	1.4	1.50	0.3	4.4	2.4	0.35	3.75	typ.	0.95	0.41

Recommended Soldering Footprint

Packing information

Tape Width		Pitch		Reel Size			
Package	(mm)	mm	inch	mm	inch	Per Reel Packing Quantity	
007.00	10	0 . 0 4	0.045 + 0.004	178	7	1,000	
SOT-89	12	8 ± 0.1	0.315 ± 0.004	330	13	4,000	

Marking information

- " MU02N028US " = Part No. " YM " = Date Code Marking
- " Y " = Year
- " M " = Month

Font type: Arial

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

