
N-Channel Enhancement Mode MOSFET

Features

• Surface-mounted package

6	D	D		1
5	미			2
4	s	S	G	3

Drain 2. Drain 3. Gate
Sourse 5. Drain 6. Drain
DFN2020-6HMA Plastic Package

Applications

Portable appliances

Battery management

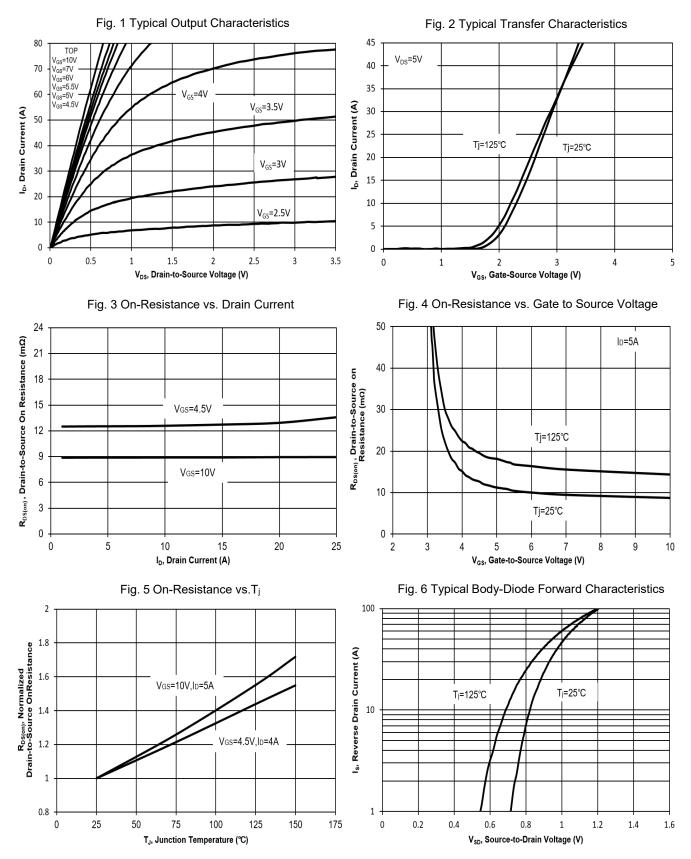
Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	30	V
Drain-Gate Voltage	V _{GS}	± 20	V
Drain Current - Continuous	ID	10	А
Drain Current - Pulsed ¹⁾	Ідм	80	A
Total Power Dissipation ²⁾	P _{tot}	1.6	W
Operating Junction and Storage Temperature Range	Tj, Tstg	- 55 to + 150	C°

Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Ambient ²⁾	R _{θJA}	78	°C/W

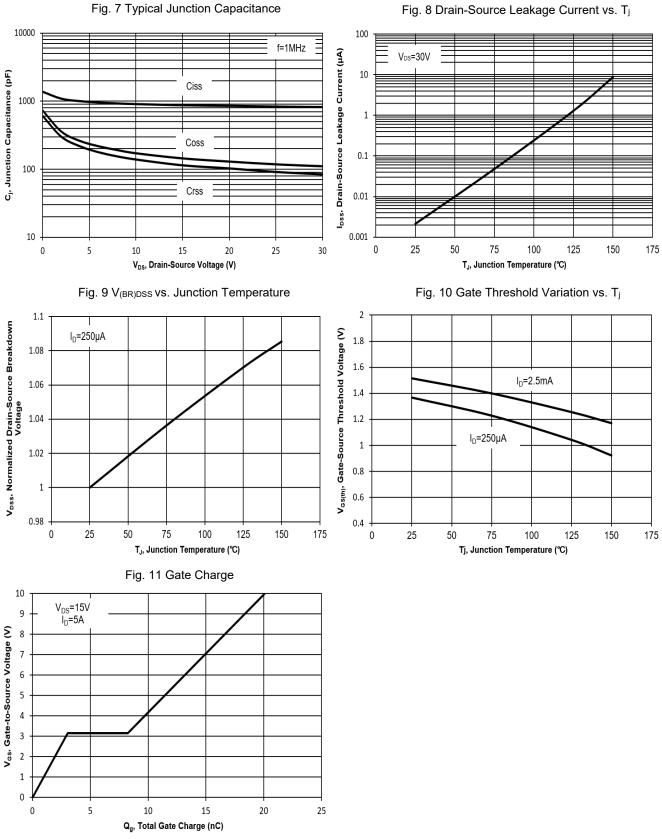
¹⁾ Pulse Test: Pulse Width \leq 100 µs, Duty Cycle \leq 2%, Repetitive rating, pulse width limited by junction temperature T_{J(MAX)} = 150°C.

²⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.



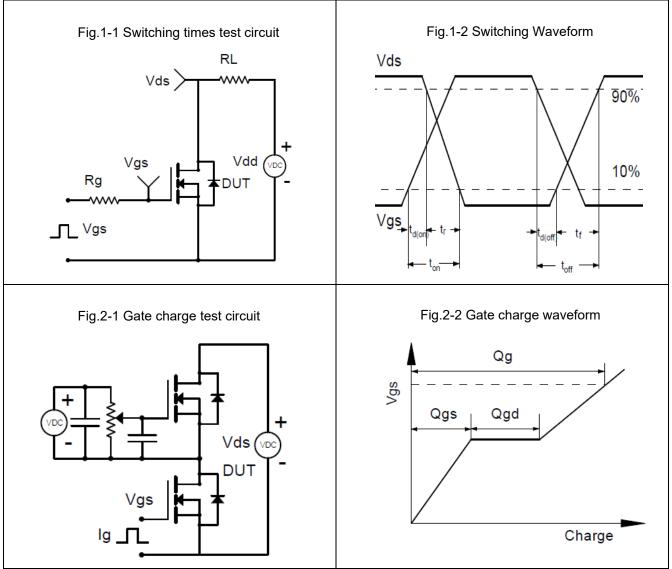
Characteristics at Ta = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at $I_D = 250 \ \mu A$	BV _{DSS}	30	-	-	V
Drain-Source Leakage Current at V_{DS} = 24 V	Idss	-	-	1	μA
Gate Leakage Current at V_{GS} = ± 16 V	lgss	-	-	± 100	nA
Gate-Source Threshold Voltage at V_{DS} = V_{GS} , I_D = 250 μ A	$V_{GS(th)}$	1	-	2	V
Drain-Source On-State Resistance at V_{GS} = 10 V, I_D = 5 A at V_{GS} = 4.5 V, I_D = 4 A	R _{DS(on)}	-	-	11 16	mΩ
DYNAMIC PARAMETERS					
Forward Transconductance at V_{DS} = 10 V, I_D = 5 A	g fs	-	9	-	S
Gate resistance at V_{GS} = 0 V, V_{DS} = 0 V, f = 1 MHz	R _g	-	2	-	Ω
Input Capacitance at V_{GS} = 0 V, V_{DS} = 15 V, f = 1 MHz	Ciss	-	865	-	pF
Output Capacitance at V_{GS} = 0 V, V_{DS} = 15 V, f = 1 MHz	Coss	-	144	-	pF
Reverse Transfer Capacitance at V_{GS} = 0 V, V_{DS} = 15 V, f = 1 MHz	Crss	-	113	-	pF
Gate charge total at V_{DS} = 15 V, I_D = 5 A, V_{GS} = 10 V at V_{DS} = 15 V, I_D = 5 A, V_{GS} = 4.5 V	Qg	-	20 10	-	nC
Gate to Source Charge at V_{DS} = 15 V, I_D = 5 A, V_{GS} = 10 V	Q _{gs}	-	3	-	nC
Gate to Drain Charge at V_{DS} = 15 V, I_D = 5 A, V_{GS} = 10 V	Q _{gd}	-	5	-	nC
Turn-On Delay Time at V _{DS} = 15 V, I_D = 5 A, V _{GS} = 10 V, R_g = 3.3 Ω	t _{d(on)}	-	9	-	ns
Turn-On Rise Time at V _{DS} = 15 V, I_D = 5 A, V _{GS} = 10 V, R_g = 3.3 Ω	tr	-	43	-	ns
Turn-Off Delay Time at V _{DS} = 15 V, I _D = 5 A, V _{GS} = 10 V, R _g = 3.3 Ω	$t_{d(off)}$	-	11	-	ns
Turn-Off Fall Time at V _{DS} = 15 V, I _D = 5 A, V _{GS} = 10 V, R _g = 3.3 Ω	t _f	-	7.5	-	ns
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at $I_s = 1 A$, $V_{GS} = 0 V$	Vsd	-	-	1.4	V
Body-Diode Continuous Current	ls	-	-	10	Α
Body Diode Reverse Recovery Time at I _s = 5 A, di/dt = 100 A / μ s	t _{rr}	-	10	-	ns
Body Diode Reverse Recovery Charge at $I_s = 5 A$, di/dt = 100 A / μs	Qrr	-	2.4	-	nC

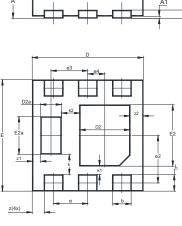


Electrical Characteristics Curves

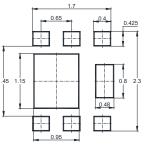
Electrical Characteristics Curves



MMV03N016L


Test Circuits

Package Outline Dimensions (Units: mm)


DFN2020-6HMA

UNIT	А	A1	A3	b	D	D2	D2a	E	E2	E2a	L
mm	0.55	0	0.15	0.25	1.95	0.85	0.33	1.95	1.05	0.65	0.225
mm	0.65	0.05	Тур.	0.35	2.05	1.05	0.43	2.05	1.25	0.75	0.325

UNIT	е	e2	e3	e4	k	k1	k2	Z	z1	z2
mm	0.65	0.863	0.7	0.325	0.37	0.15	0.36	0.2	0.11	0.2
	BSC	BSC	BSC	BSC	BSC	BSC	BSC	BSC	BSC	BSC

Recommended Soldering Footprint

Packing information

	Tape Width		Pitch	Reel	Size	
Package	(mm)	mm inch mm		inch	Per Reel Packing Quantity	
DFN2020-6HMA	8	4 ± 0.1	0.157 ± 0.004	178	7	4,000

Marking information

" LM " = Part No.	[
" YYWW " = Date Code Marking		LM
" Y " = Year (ex: 19 = 2019)		
"W" = Week (ex: 09 = the 9th week of the year)		YYWW
Font type: Arial	Pin1 point	•

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

