
P-Channel Enhancement Mode MOSFET

Features

• Surface-mounted package

 Gate 2. Source 3. Drain SOT-23 Plastic Package

Applications

- Portable appliances
- Battery management

Absolute Maximum Ratings (at T_a = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	-V _{DS}	8	V	
Gate-Source Voltage		V _{GS}	± 8	V
Continuous Drain Current	t ≤ 10 s	-I _D	3.7	А
Pulsed Drain Current 1)	-I _{DM}	11	А	
Power Dissipation ²⁾	t ≤ 10 s	P _D	960	mW
Operating Junction and Storage Temperat	T _j ,T _{stg}	- 55 to + 150	°C	

Thermal Characteristics

Parameter	Symbol	Max.	Unit	
Thermal Resistance - Junction to Ambient ²⁾	t ≤ 10 s Steady State	R _θ ЈА	130 160	°C/W

 $^{^{1)}}$ Pulse Test: Pulse Width ≤ 100 μs, Duty Cycle ≤ 2%,Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.

²⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate.

MMFTP2101

Characteristics at T_a = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit	
STATIC PARAMETERS	•					
Drain-Source Breakdown Voltage at -I _D = 250 μA	-BV _{DSS}	8	-	-	V	
Drain-Source Leakage Current at -V _{DS} = 6.4 V	-I _{DSS}	-	-	1	μΑ	
Gate Leakage Current at V _{GS} = ± 8 V	lgss	-	-	± 100	nA	
Gate-Source Threshold Voltage at V _{DS} = V _{GS} , -I _D = 250 μA	-V _{GS(th)}	0.4	-	1	V	
Drain-Source On-State Resistance at -V _{GS} = 4.5 V, -I _D = 3.5 A at -V _{GS} = 2.5 V, -I _D = 3 A at -V _{GS} = 1.8 V, -I _D = 2 A	R _{DS(on)}	- - -	- - -	52 72 120	mΩ	
DYNAMIC PARAMETERS				_		
Forward Transconductance at $-V_{DS} = 5 \text{ V}$, $-I_D = 3.5 \text{ A}$	g fs	-	8.3	-	S	
Gate resistance at $V_{DS} = 0 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	Rg	-	4.7	-	Ω	
Input Capacitance at -V _{DS} = 8 V, V _{GS} = 0 V, f = 1 MHz	Ciss	-	543	-	pF	
Output Capacitance at - V_{DS} = 8 V, V_{GS} = 0 V, f = 1 MHz	Coss	-	97	-	pF	
Reverse Transfer Capacitance at -V _{DS} = 8 V, V _{GS} = 0 V, f = 1 MHz	Crss	-	70	-	pF	
Total Gate Charge at -V _{GS} = 4.5 V, -V _{DS} = 8 V, -I _D = 3.5 A at -V _{GS} = 2.5 V, -V _{DS} = 8 V, -I _D = 3.5 A	Qg		5.7 3.3	- -	nC	
Gate to Source Charge at -V _{GS} = 4.5 V , -V _{DS} = 8 V , -I _D = 3.5 A	Q_{gs}	-	1.7	-	nC	
Gate to Drain Charge at -V _{GS} = 4.5 V , -V _{DS} = 8 V , -I _D = 3.5 A	Q_{gd}	-	1.6	-	nC	
Turn-On Delay Time at -V _{DD} = 8 V, -V _{GS} = 10 V, -I _D = 3.5 A, R _g = 3.3 Ω	t _{d(on)}	-	7	-	ns	
Turn-On Rise Time at -V _{DD} = 8 V, -V _{GS} = 10 V, -I _D = 3.5 A, R _g = 3.3 Ω	t _r	-	42	-	ns	
Turn-Off Delay Time at -V _{DD} = 8 V, -V _{GS} = 10 V, -I _D = 3.5 A, R _g = 3.3 Ω	t _{d(off)}	-	10	-	ns	
Turn-Off Fall Time at -V _{DD} = 8 V, -V _{GS} = 10 V, -I _D = 3.5 A, R _g = 3.3 Ω	t _f	-	7	-	ns	
Body-Diode PARAMETERS						
Drain-Source Diode Forward Voltage at $-I_S = 1.2 \text{ A}$, $V_{GS} = 0 \text{ V}$	-V _{SD}	-	-	1.2	V	
Body-Diode Continuous Current	-I _S	-	-	1.2	Α	
Body Diode Reverse Recovery Time at -I _s = 3.5 A, di/dt = 100 A / μs	t _{rr}	-	5.6	-	ns	
Body Diode Reverse Recovery Charge at -ls = 3.5 A, di/dt = 100 A / μs	Qrr	-	0.6	-	nC	

Electrical Characteristics Curves

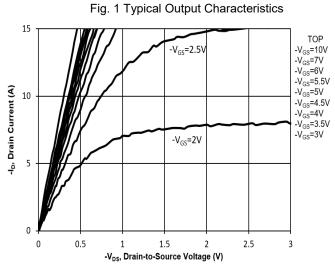


Fig. 2 Typical Transfer Characteristics

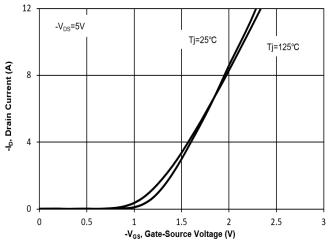


Fig. 3 On-Resistance vs. Drain Current

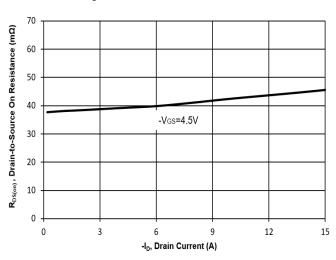


Fig. 4 On-Resistance vs. Gate-Source Voltage

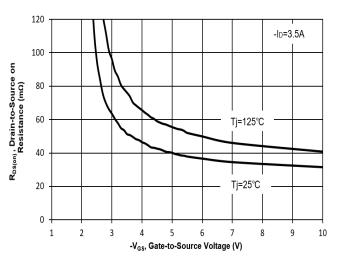


Fig. 5 On-Resistance vs.T_j

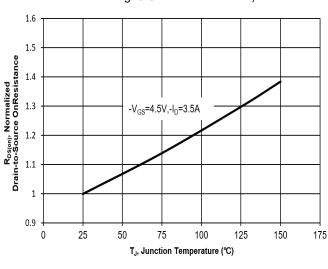
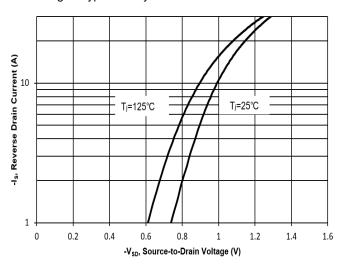



Fig. 6 Typical Body-Diode Forward Characteristics

Electrical Characteristics Curves

Fig. 7 Typical Junction Capacitance

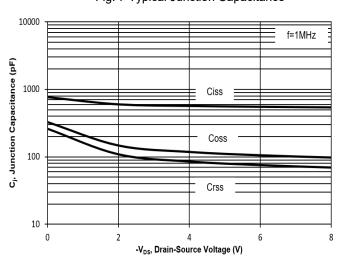


Fig. 8 Drain-Source Leakage Current vs. Tj

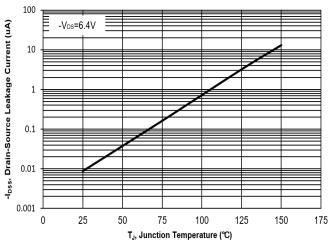


Fig. 9 $V_{(BR)DSS}$ vs. Junction Temperature

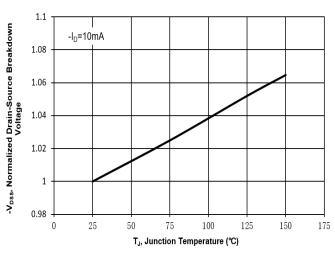


Fig. 10 Gate Threshold Variation vs. T_j

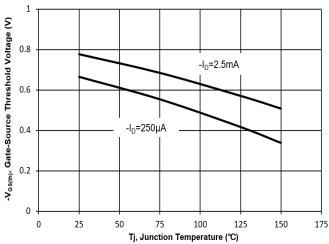
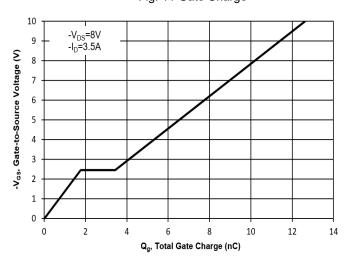
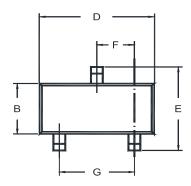
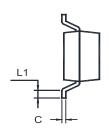
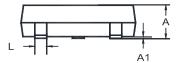



Fig. 11 Gate Charge

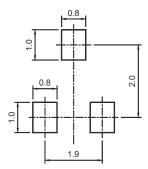



Test Circuits



Package Outline (Dimensions in mm)

SOT-23



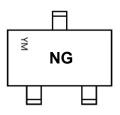
Unit	Α	A1	В	С	D	Ε	F	G	L	L1
20.00	1.20	0.100	1.40	0.19	3.04	2.6	1.02	2.04	0.51	0.2
mm	0.89	0.013	1.20	0.08	2.80	2.2	0.89	1.78	0.37	MIN

Recommended Soldering Footprint

Packing information

Package	Tape Width	Pit	tch	Reel	Size		
	(mm)	mm	inch	mm	inch	Per Reel Packing Quantity	
SOT-23	8	4 ± 0.1	0.157 ± 0.004	178	7	3,000	

Marking information


" NG " = Part No.

" YM " = Date Code Marking

" Y " = Year

" M " = Month

Font type: Arial

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

