
P-Channel Enhancement Mode MOSFET

Features

- · Extremely low threshold voltage
- Built-in G-S Protection Diode
- Typical ESD Protection HBM Class 1C

<u> </u>	ā.		
Classification	Voltage Range(V)		
0A	< 125		
0B	125 to < 250		
1A	250 to < 500		
1B	500 to < 1000		
1C	1000 to < 2000		
2	2000 to < 4000		
3A	4000 to < 8000		
3B	≥ 8000		

 Gate 2. Source 3. Drain SOT-23 Plastic Package

Applications

- · Portable appliances
- · High speed switch
- Battery management
- Low power DC to DC Converter

Absolute Maximum Ratings (at Ta = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-Source Voltage	-V _{DS}	20	V
Gate-Source Voltage	V _{GS}	± 10	V
Continuous Drain Current	-I _D	4.9	Α
Peak Drain Current, Pulsed 1)	-I _{DM}	24	Α
Power Dissipation	P _D	0.81 ²⁾ 1.2 ³⁾	W
Operating Junction Temperature Range	Tj	- 55 to + 150	°C
Storage Temperature Range	T _{stg}	- 55 to + 150	°C

Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Ambient	R ₀ JA	154 ²⁾ 104 ³⁾	°C/W

¹⁾ Pulse Test: Pulse Width ≤ 100 μs, Duty Cycle ≤ 2%, Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.

²⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout, $t \le 10 \text{ S}$.

 $^{^{3)}}$ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air, t \leq 10 S.

MMFTP2035AK

Characteristics at Ta = 25°C unless otherwise specified

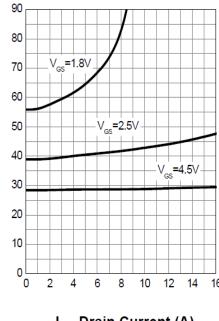
Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at -I _D = 250 μA	-V _{(BR)DSS}	20	-	-	V
Zero Gate Voltage Drain Current at -V _{DS} = 20 V	-I _{DSS}	-	-	1	μΑ
Gate-Source Leakage at V _{GS} = ± 8 V	I _{GSS}	-	-	± 10	μΑ
Gate-Source Threshold Voltage at V_{DS} = V_{GS} , $-I_D$ = 250 μA	-V _{GS(th)}	0.4	-	1	V
Drain-Source On-State Resistance at -V _{GS} = 4.5 V, -I _D = 4 A at -V _{GS} = 2.5 V, -I _D = 4 A at -V _{GS} = 1.8 V, -I _D = 2 A	R _{DS(on)}	- - -	- - -	35 45 62	mΩ
DYNAMIC PARAMETERS					
Forward Transconductance at $-V_{DS} = 5 \text{ V}$, $-I_D = 4 \text{ A}$	g fs	-	14	-	S
Input Capacitance at $-V_{DS} = 10 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	Ciss	-	816	-	pF
Output Capacitance at $-V_{DS} = 10 \text{ V}$, $V_{GS} = 0 \text{ V}$, $V_{GS} = 10 \text{ MHz}$	Coss	-	213	-	pF
Reverse Transfer Capacitance at $-V_{DS} = 10 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	Crss	-	83	-	pF
Total Gate Charge at -V _{DS} = 10 V, -I _D = 3 A, -V _{GS} = 4.5 V at -V _{DS} = 10 V, -I _D = 3 A, -V _{GS} = 2.5 V	Qg	-	12.5 7.2	-	nC
Gate to Source Charge at $-V_{DS} = 10 \text{ V}$, $-I_D = 3 \text{ A}$, $-V_{GS} = 4.5 \text{ V}$	Q_{gs}	-	1.6	-	nC
Gate to Drain Charge at $-V_{DS} = 10 \text{ V}$, $-I_D = 3 \text{ A}$, $-V_{GS} = 4.5 \text{ V}$	Q_{gd}	-	2.8	-	nC
Turn-On Delay Time at -V _{DS} = 10 V, -V _{GS} = 4.5 V, -I _D = 3 A, R _G = 4.5 Ω	t _{d(on)}	-	86	-	nS
Turn-On Rise Time at -V _{DS} = 10 V, -V _{GS} = 4.5 V, -I _D = 3 A, R _G = 4.5 Ω	tr	-	51	-	nS
Turn-Off Delay Time at -V _{DS} = 10 V, -V _{GS} = 4.5 V, -I _D = 3 A, R _G = 4.5 Ω	$t_{d(off)}$	-	185	-	nS
Turn-Off Fall Time at -V _{DS} = 10 V, -V _{GS} = 4.5 V, -I _D = 3 A, R _G = 4.5 Ω	t _f	-	1050	-	nS
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at -ls = 1 A	-V _{SD}	-	-	1	V
Body-Diode Continuous Current	-ls	-	-	4.9	Α
Body Diode Reverse Recovery Time at -ls = 3 A, di/dt = 100 A / µs	t _{rr}	-	0.9	-	μS
Body Diode Reverse Recovery Charge at -ls = 3 A, di/dt = 100 A / µs	Q _{rr}	-	6.3	-	μC

R_{DS(ON)} - On Resistance (mΩ)

Electrical Characteristics Curves

0.2

Output Characteristics

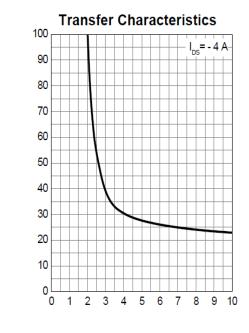

-V_{DS} - Drain-Source Voltage (V)

0.6

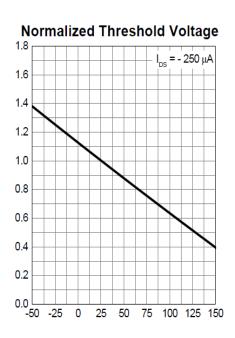
8.0

1.0

0.4



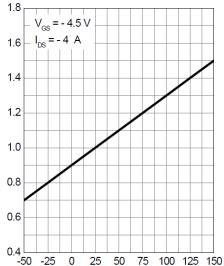
R_{DS(ON)} - On Resistance (mΩ)


Normalized Threshold Voltage

Drain-Source On Resistance

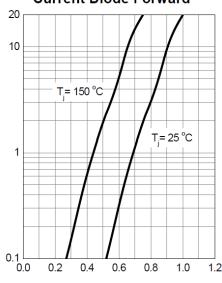
-ID - Drain Current (A)

-V_{GS} - Gate-Source Voltage (V)



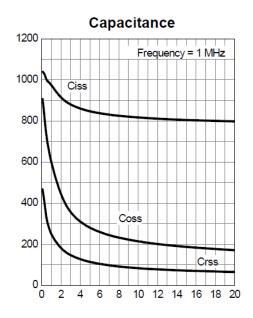
T_j - Junction Temperature (°C)

Electrical Characteristics Curves

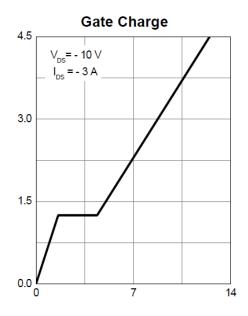

Normalized On Resistance

Normalized On Resistance

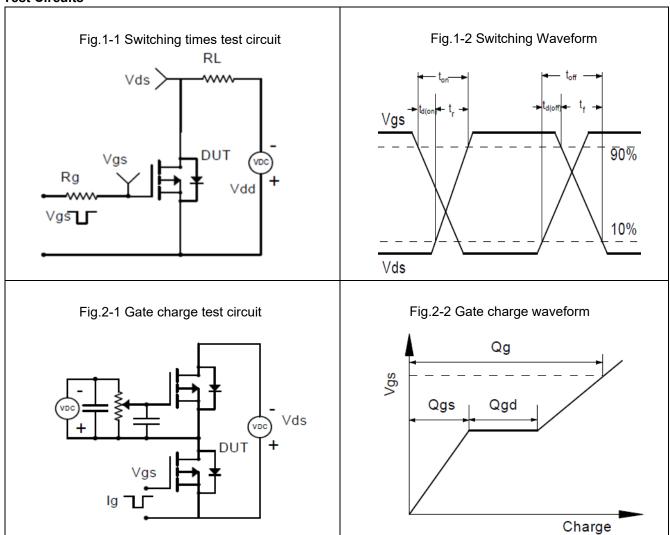
Is - Source Current (A)


Current Diode Forward

-V_{SD} - Source-Drain Voltage (V)

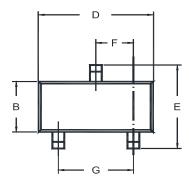

T_j - Junction Temperature (°C)

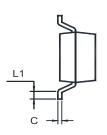
C - Capacitance (pF)

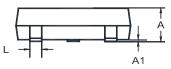

-V_{DS} - Drain-Source Voltage (V)

-V_{GS} - Gate-Source Voltage (V)

Q_G - Gate Charge (nC)

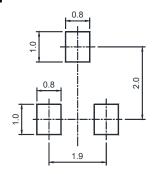

Test Circuits





Package Outline (Dimensions in mm)

SOT-23



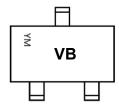
Unit	Α	A1	В	С	D	E	F	G	L	L1
	1.20	0.100	1.40	0.19	3.04	2.6	1.02	2.04	0.51	0.2
mm	0.89	0.013	1.20	0.08	2.80	2.2	0.89	1.78	0.37	MIN

Recommended Soldering Footprint

Packing information

	Package Tape Width (mm)		tch	Reel	Size		
Package			inch	mm	inch	Per Reel Packing Quantity	
SOT-23	8	4 ± 0.1	0.157 ± 0.004	178	7	3,000	

Marking information


" VB " = Part No.

" YM " = Date Code Marking

" Y " = Year

" M " = Month

Font type: Arial

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

