# **N-Channel Enhancement Mode MOSFET**


#### **Features**

• Surface-mounted package

# Gate

Drain

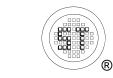
Source



1. Gate 2. Source 3. Drain SOT-23 Plastic Package

# **Applications**

- Portable appliances
- Battery management
- · High speed switch


# Absolute Maximum Ratings (at Ta = 25°C unless otherwise specified)

| Parameter                            | Symbol           | Value         | Unit |
|--------------------------------------|------------------|---------------|------|
| Drain-Source Voltage                 | V <sub>DS</sub>  | 30            | V    |
| Gate-Source Voltage                  | V <sub>GS</sub>  | ± 12          | V    |
| Continuous Drain Current             | ΙD               | 3.8           | А    |
| Pulsed Drain Current 1)              | I <sub>DM</sub>  | 15            | А    |
| Power Dissipation <sup>2)</sup>      | P <sub>D</sub>   | 1.4           | W    |
| Operating Junction Temperature Range | Tj               | - 55 to + 150 | °C   |
| Storage Temperature Range            | T <sub>stg</sub> | - 55 to + 150 | °C   |

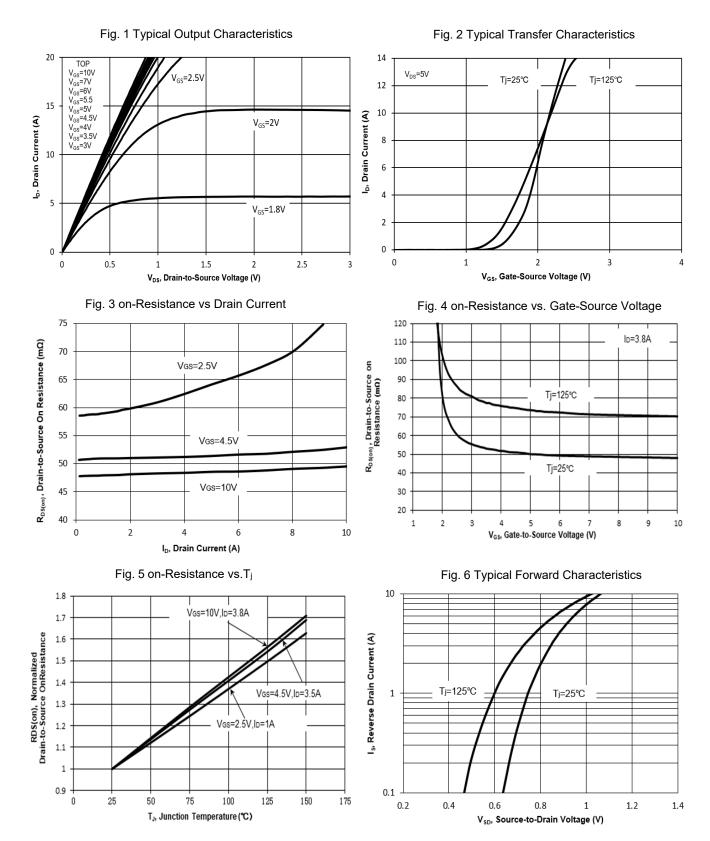
# **Thermal Resistance Ratings**

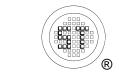
| Parameter                                                 | Symbol                   | Max.              | Unit      |      |
|-----------------------------------------------------------|--------------------------|-------------------|-----------|------|
| Thermal Resistance from Junction to Ambient <sup>2)</sup> | t ≤ 10 s<br>Steady State | R <sub>θ</sub> ЈА | 90<br>125 | °C/W |

<sup>1)</sup> Pulse Test: Pulse Width ≤ 100 μs, Duty Cycle ≤ 2%, Repetitive rating, pulse width limited by junction temperature T<sub>J(MAX)</sub>=150°C.



<sup>&</sup>lt;sup>2)</sup> Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.


# MMFTN3424A


# Characteristics at Ta= 25°C unless otherwise specified

| Parameter                                                                                                                              | Symbol               | Min.        | Тур.        | Max.           | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|-------------|----------------|------|
| STATIC PARAMETERS                                                                                                                      |                      |             |             |                |      |
| Drain-Source Breakdown Voltage<br>at I <sub>D</sub> = 250 µA                                                                           | V <sub>(BR)DSS</sub> | 30          | -           | -              | V    |
| Zero Gate Voltage Drain Current at V <sub>DS</sub> = 30 V                                                                              | I <sub>DSS</sub>     | -           | -           | 1              | μΑ   |
| Gate-Source Leakage at $V_{GS} = \pm 12 \text{ V}$                                                                                     | I <sub>GSS</sub>     | -           | -           | ± 100          | nA   |
| Gate-Source Threshold Voltage<br>at V <sub>DS</sub> = V <sub>GS</sub> , I <sub>D</sub> = 250 μA                                        | $V_{GS(th)}$         | 0.5         | -           | 1.5            | V    |
| Drain-Source On-State Resistance at $V_{GS}$ = 10 V, $I_D$ = 3.8 A at $V_{GS}$ = 4.5 V, $I_D$ = 3.5 A at $V_{GS}$ = 2.5 V, $I_D$ = 1 A | R <sub>DS(on)</sub>  | -<br>-<br>- | -<br>-<br>- | 55<br>65<br>85 | mΩ   |
| DYNAMIC PARAMETERS                                                                                                                     |                      |             | ı           | 1              | ı    |
| Forward transfer admittance at $V_{DS}$ = 5 V, $I_D$ = 3.6 A                                                                           | <b>g</b> FS          | -           | 8           | -              | S    |
| Gate resistance<br>at $V_{DS} = 0 \text{ V}$ , $V_{GS} = 0 \text{ V}$ , $f = 1 \text{ MHz}$                                            | Rg                   | -           | 0.6         | -              | Ω    |
| Input Capacitance at $V_{GS} = 0 \text{ V}$ , $V_{DS} = 15 \text{ V}$ , $f = 1 \text{ MHz}$                                            | Ciss                 | -           | 794         | -              | pF   |
| Output Capacitance at $V_{GS} = 0 \text{ V}$ , $V_{DS} = 15 \text{ V}$ , $f = 1 \text{ MHz}$                                           | Coss                 | -           | 52          | -              | pF   |
| Reverse Transfer Capacitance at $V_{GS} = 0 \text{ V}$ , $V_{DS} = 15 \text{ V}$ , $f = 1 \text{ MHz}$                                 | Crss                 | -           | 25          | -              | pF   |
| Gate charge total at $V_{DS}$ = 15 V, $I_D$ = 1.7 A, $V_{GS}$ = 10 V at $V_{DS}$ = 15 V, $I_D$ = 1.7 A, $V_{GS}$ = 4.5 V               | Qg                   | -<br>-      | 20<br>9     | -<br>-         | nC   |
| Gate to Source Charge at $V_{DS}$ = 15 V, $I_D$ = 1.7 A, $V_{GS}$ = 10 V                                                               | Q <sub>gs</sub>      | -           | 2.1         | -              | nC   |
| Gate to Drain Charge at $V_{DS}$ = 15 V, $I_D$ = 1.7 A, $V_{GS}$ = 10 V                                                                | $Q_{gd}$             | ı           | 2           | -              | nC   |
| Turn-On Delay Time at $V_{GS}$ = 10 V, $V_{DS}$ = 15 V, $I_D$ = 1.7 A, $R_g$ = 3.3 $\Omega$                                            | $t_{\text{d(on)}}$   | -           | 14          | -              | ns   |
| Turn-On Rise Time at $V_{GS}$ = 10 V, $V_{DS}$ = 15 V, $I_D$ = 1.7 A, $R_g$ = 3.3 $\Omega$                                             | t <sub>r</sub>       | -           | 8           | -              | ns   |
| Turn-Off Delay Time at $V_{GS}$ = 10 V, $V_{DS}$ = 15 V, $I_D$ = 1.7 A, $R_g$ = 3.3 $\Omega$                                           | $t_{d(off)}$         | -           | 13.6        | -              | ns   |
| Turn-Off Fall Time at $V_{GS}$ = 10 V, $V_{DS}$ = 15 V, $I_D$ = 1.7 A, $R_g$ = 3.3 $\Omega$                                            | t <sub>f</sub>       | -           | 2.1         | -              | ns   |
| Body-Diode PARAMETERS                                                                                                                  |                      |             |             |                |      |
| Body Diode Voltage<br>at Is = 1 A                                                                                                      | VsD                  | -           | -           | 1              | V    |
| Body-Diode Continuous Current                                                                                                          | Is                   | -           | -           | 3.8            | Α    |
| Body Diode Reverse Recovery Time<br>at I <sub>S</sub> = 1.7 A, V <sub>DD</sub> = 15 V, di/dt = 100 A / μs                              | t <sub>rr</sub>      | -           | 8           | -              | ns   |
| Body Diode Reverse Recovery Charge<br>at I <sub>S</sub> = 1.7 A, V <sub>DD</sub> = 15 V, di/dt = 100 A / μs                            | Qrr                  | -           | 4           | -              | nc   |



#### **Electrical Characteristics Curves**





#### **Electrical Characteristics Curves**

Fig. 7 Typical Junction Capacitance

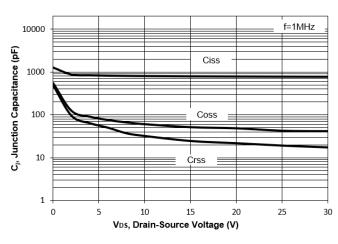



Fig. 8 Drain-Source Leakage Current vs. T<sub>j</sub>

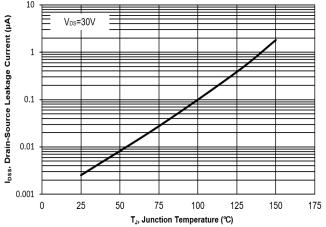



Fig. 9  $V_{(BR)DSS}$  vs. Junction Temperature

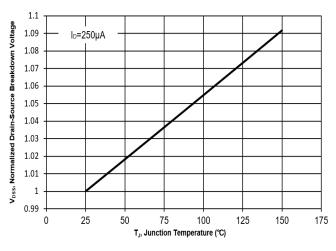



Fig. 10 Gate Threshold Variation vs. T<sub>j</sub>

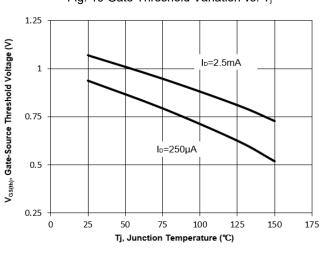
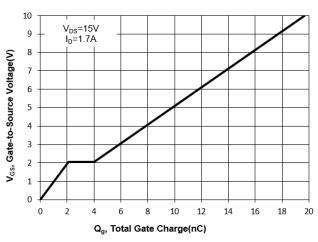
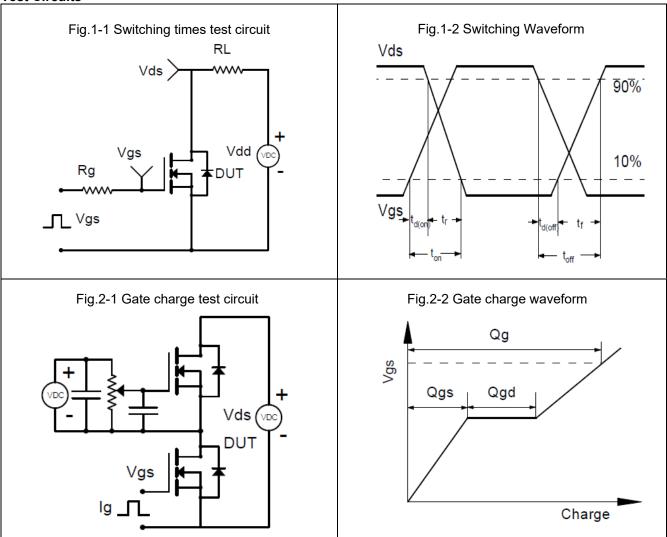
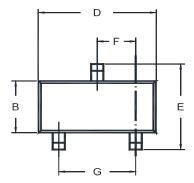
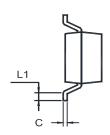
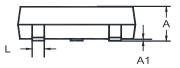





Fig. 11 Gate Charge



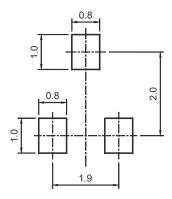




# **Test Circuits**




# Package Outline (Dimensions in mm)

**SOT-23** 








| Unit | Α    | A1    | В    | С    | D    | Е   | F    | G    | L    | L1  |
|------|------|-------|------|------|------|-----|------|------|------|-----|
|      | 1.20 | 0.100 | 1.40 | 0.19 | 3.04 | 2.6 | 1.02 | 2.04 | 0.51 | 0.2 |
| mm   | 0.89 | 0.013 | 1.20 | 0.08 | 2.80 | 2.2 | 0.89 | 1.78 | 0.37 | MIN |

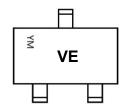
# **Recommended Soldering Footprint**



Packing information

| uoiting iiiioi |                 |         |               |      |      |                           |  |
|----------------|-----------------|---------|---------------|------|------|---------------------------|--|
| Package        | Tape Width (mm) | Pitch   |               | Reel | Size |                           |  |
|                |                 | mm      | inch          | mm   | inch | Per Reel Packing Quantity |  |
| SOT-23         | 8               | 4 ± 0.1 | 0.157 ± 0.004 | 178  | 7    | 3,000                     |  |

# **Marking information**


" VE " = Part No.

" YM " = Date Code Marking

" Y " = Year

" M " = Month

Font type: Arial



Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

