
N-Channel Enhancement Mode MOSFET

Features

- · Built-in G-S Protection Diode
- Typical ESD Protection HBM Class 1B

Classification	Voltage Range(V)		
0A	< 125		
0B	125 to < 250		
1A	250 to < 500		
1B	500 to < 1000		
1C	1000 to < 2000		
2	2000 to < 4000		
3A	4000 to < 8000		
3B	≥ 8000		

 Gate 2. Source 3. Drain SOT-23 Plastic Package

Applications

- Portable appliances
- Battery management
- · High speed switch
- Low power DC to DC

Absolute Maximum Ratings (at T_a = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	20	V	
Gate-Source Voltage	V _{GS}	± 8	V	
Continuous Drain Current	I _D	6.5	Α	
Peak Drain Current, Pulesd 1)		I _{DM}	30	Α
Total Power Dissipation 2)	t ≤ 10 s Steady State	P _{tot}	1.4 1	W
Operating Junction and Storage Temperature	T _j , T _{stg}	- 55 to + 150	°C	

Thermal Resistance Ratings

Parameter	Symbol	Max.	Unit	
Thermal Resistance from Junction to Ambient ²⁾	t ≤ 10 s Steady State	$R_{ heta JA}$	89 125	°C/W

¹⁾ Pulse Test: Pulse Width ≤ 100 μs, Duty Cycle ≤ 2%, Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.

²⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate.

MMFTN3416K

Characteristics at Ta = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at I _D = 250 μA	V _{(BR)DSS}	20	-	-	V
Gate Voltage Drain Current at V _{DS} = 16 V	I _{DSS}	-	-	1	μΑ
Gate-Source Leakage at $V_{GS} = \pm 4.5 \text{ V}$ at $V_{GS} = \pm 8 \text{ V}$	I _{GSS}	- -	- -	± 1 ± 10	μА
Gate-Source Threshold Voltage at $V_{DS} = V_{GS}$, $I_D = 250 \mu A$	$V_{GS(th)}$	0.4	-	1	V
Drain-Source On-State Resistance at V_{GS} = 4.5 V, I_D = 6.5 A at V_{GS} = 2.5 V, I_D = 5.5 A at V_{GS} = 1.8 V, I_D = 5 A	R _{DS(on)}	- - -	- - -	22 26 34	mΩ
DYNAMIC PARAMETERS					
Gate Resistance at $V_{GS} = 0 \text{ V}$, $V_{DS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	Rg	-	1.5	-	ΚΩ
Forward Transconductance at V_{DS} = 5 V, I_D = 6.5 A	g fs	-	13	-	S
Input Capacitance at V_{DS} = 10 V, V_{GS} = 0 V, f = 1 MHz	C _{iss}	-	564	-	pF
Output Capacitance at V_{DS} = 10 V, V_{GS} = 0 V, f = 1 MHz	Coss	-	120	-	pF
Reverse Transfer Capacitance at V_{DS} = 10 V, V_{GS} = 0 V, f = 1 MHz	Crss	-	25	-	pF
Total Gate Charge at V_{DS} = 10 V, I_{D} = 6.5 A, V_{GS} = 4.5 V at V_{DS} = 10 V, I_{D} = 6.5 A, V_{GS} = 2.5 V	Qg	- -	16 10	- -	nC
Gate to Source Charge at V_{DS} = 10 V, I_D = 6.5 A, V_{GS} = 4.5 V	Q_{gs}	-	1	-	nC
Gate to Drain Charge at V_{DS} = 10 V, I_D = 6.5 A, V_{GS} = 4.5 V	\mathbf{Q}_{gd}	-	4	-	nC
Turn-On Delay Time at V_{DS} = 10 V, I_{D} = 6.5 A, V_{GS} = 5 V, R_{GEN} = 3.3 Ω	t _{d(on)}	-	3.8	-	μs
Turn-On Rise Time at V_{DS} = 10 V, I_{D} = 6.5 A, V_{GS} = 5 V, R_{GEN} = 3.3 Ω	tr	-	1.9	-	μs
Turn-Off Delay Time at V_{DS} = 10 V, I_{D} = 6.5 A, V_{GS} = 5 V, R_{GEN} = 3.3 Ω	$t_{\text{d(off)}}$	-	2.5	-	μs
Turn-Off Fall Time at V_{DS} = 10 V, I_{D} = 6.5 A, V_{GS} = 5 V, R_{GEN} = 3.3 Ω	t _f	-	1	-	μs
Body-Diode PARAMETERS					
Body Diode Voltage at Is = 1 A	VsD	-	-	1	V
Body-Diode Continuous Current	Is	-	-	6.5	Α
Body Diode Reverse Recovery Time at I _s = 5 A, di/dt = 50 A / μs	t _{rr}	-	1.5	-	μS
Body Diode Reverse Recovery Charge at $I_S = 5$ A, di/dt = 50 A / μ s	Qrr	-	10	-	μC

Electrical Characteristics Curves

Fig. 1 Input Characteristics

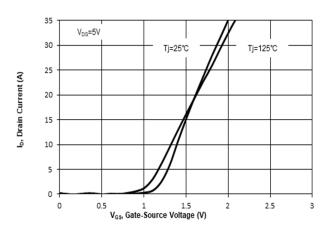


Fig. 2 Output Characteristics

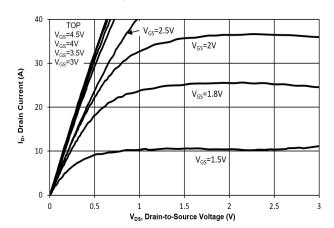


Fig. 3 On-Resistance vs. Drain Current

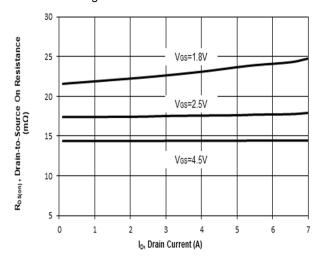


Fig. 4 On-Resistance vs. Gate-Source Voltage

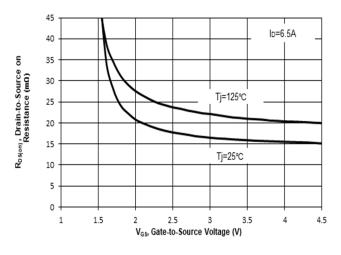


Fig. 5 On-Resistance vs. Junction Temperature

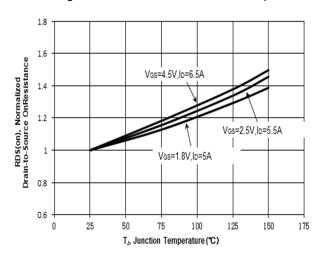
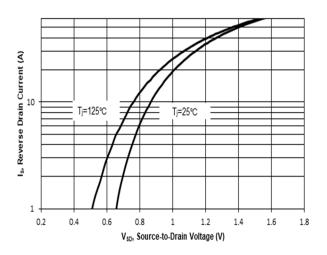



Fig. 6 Typical Forward Characteristics

3/6

Electrical Characteristics Curves

Fig. 7 Capacitance Characteristics

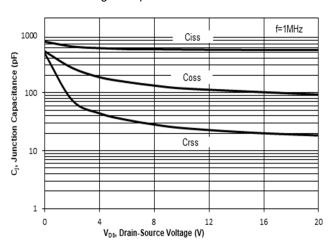


Fig. 8 I_{DSS} vs. Junction Temperature

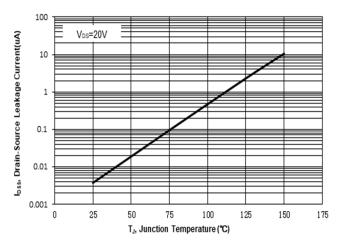


Fig. 9 $V_{(BR)DSS}$ vs. Junction Temperature

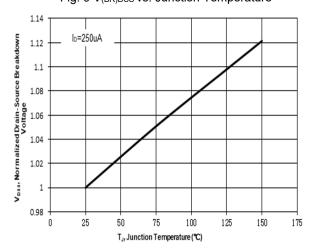


Fig. 10 Gate-Source Threshold Voltage vs. $T_{\rm j}$

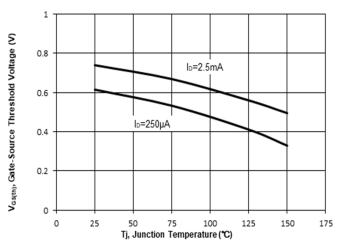
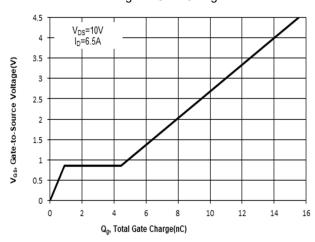
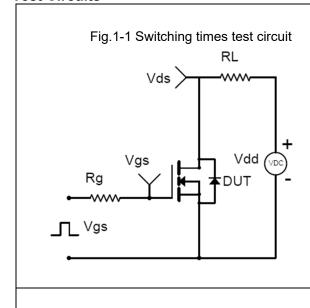




Fig. 11 Gate Charge

Test Circuits

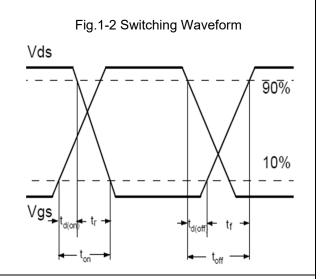
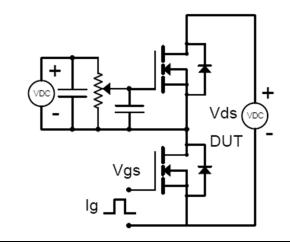
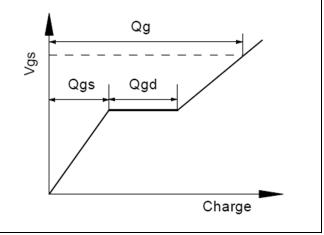
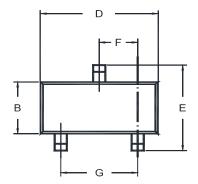
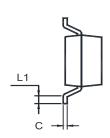
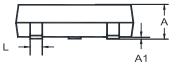


Fig.2-1 Gate charge test circuit

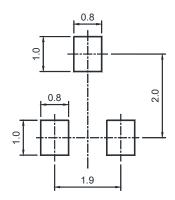

Fig.2-2 Gate charge waveform





Package Outline (Dimensions in mm)

SOT-23



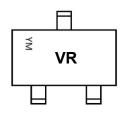
Unit	Α	A1	В	С	D	E	F	G	L	L1
	1.20	0.100	1.40	0.19	3.04	2.6	1.02	2.04	0.51	0.2
mm	0.89	0.013	1.20	0.08	2.80	2.2	0.89	1.78	0.37	MIN

Recommended Soldering Footprint

Packing information

Tape Width		Pit	tch	Reel	Size		
Package	(mm)	mm	inch	mm	inch	Per Reel Packing Quantity	
SOT-23	8	4 ± 0.1	0.157 ± 0.004	178	7	3,000	

Marking information


" VR " = Part No.

" YM " = Date Code Marking

" Y " = Year

" M " = Month

Font type: Arial

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

