
N-Channel Enhancement Mode MOSFET

Features

- Surface-mounted package
- Built-in G-S Protection Diode
- Typical ESD Protection HBM Class 2

Classification	Voltage Range(V)
0A	< 125
0B	125 to < 250
1A	250 to < 500
1B	500 to < 1000
1C	1000 to < 2000
2	2000 to < 4000
3A	4000 to < 8000
3B	≥ 8000

 Gate 2. Source 3. Drain SOT-23 Plastic Package

Applications

- Portable appliances
- Battery management

Absolute Maximum Ratings (at Ta = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	V
Gate-Source Voltage	V_{GS}	± 12	V
Drain Current	I _D	5.8	Α
Peak Drain Current, Pulsed 1)	I _{DM}	30	Α
Total Power Dissipation ²⁾ t ≤ 10 s	P _{tot}	1.4	W
Operating Junction and Storage Temperature Range	T _J , T _{stg}	- 55 to + 150	°C

Thermal Resistance Ratings

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Ambient ²⁾ t ≤ 10 s Steady State	R _θ JA	90 125	°C/W

 $^{^{1)}}$ Pulse Test: Pulse Width \leq 100 μ s, Duty Cycle \leq 2%, Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$.

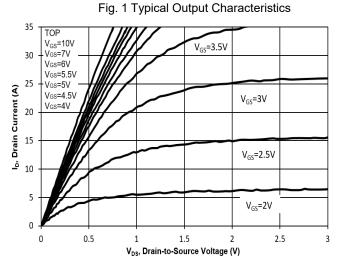
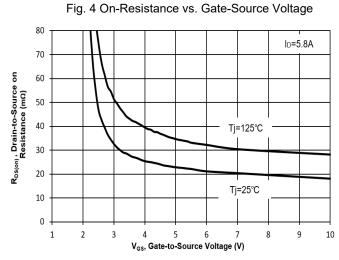
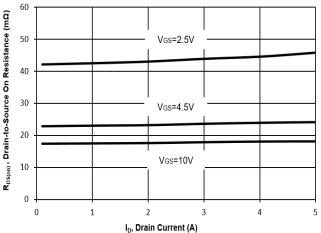
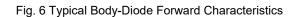
²⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.

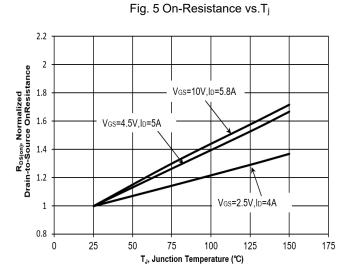
MMFTN3400SK

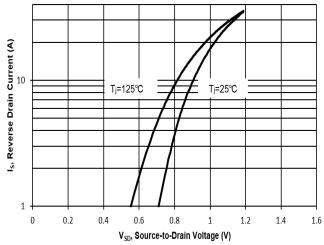
Characteristics at T_a = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at I _D = 250 μA	V _{(BR)DSS}	30	-	-	V
Zero Gate Voltage Drain Current at V _{DS} = 24 V	I _{DSS}	-	-	1	μΑ
Gate-Source Leakage at $V_{GS} = \pm 12 \text{ V}$	I _{GSS}	-	-	± 10	μΑ
Gate-Source Threshold Voltage at $V_{GS} = V_{DS}$, $I_D = 250 \mu A$	V _{GS(th)}	0.65	-	1.45	V
Drain-Source On-State Resistance at V_{GS} = 10 V, I_D = 5.8 A at V_{GS} = 4.5 V, I_D = 5 A at V_{GS} = 2.5 V, I_D = 4 A	R _{DS(on)}	- - -	- - -	28 33 52	mΩ
DYNAMIC PARAMETERS					
Forward Transconductance at $V_{DS} = 5 \text{ V}$, $I_D = 5 \text{ A}$	g FS	-	7.4	-	S
Gate Resistance at V _{DS} = 0 V, V _{GS} = 0 V, f = 1 MHz	Rg	-	1	-	Ω
Input Capacitance at V_{DS} = 15 V, V_{GS} = 0 V, f = 1 MHz	Ciss	-	357	-	pF
Output Capacitance at V_{DS} = 15 V, V_{GS} = 0 V, f = 1 MHz	Coss	-	58	-	pF
Reverse Transfer Capacitance at V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	Crss	-	37	-	pF
Total Gate Charge at V_{DS} = 15 V, I_D = 5 A, V_{GS} = 10 V at V_{DS} = 15 V, I_D = 5 A, V_{GS} = 4.5 V	Qg	1 1	10.2 5	-	nC
Gate to Source Charge at V_{DS} = 15 V, I_D = 5 A, V_{GS} = 10 V	Q _{gs}	-	1.1	-	nC
Gate to Drain Charge at V_{DS} = 15 V, I_D = 5 A, V_{GS} = 10 V	Q _{gd}	-	1.9	-	nC
Turn-On Delay Time at V_{DS} = 15 V, I_D = 5 A, V_{GS} = 10 V, R_G = 1 Ω	t _{d(on)}	-	8	-	ns
Turn-On Rise Time at V_{DS} = 15 V, I_D = 5 A, V_{GS} = 10 V, R_G = 1 Ω	t _r	-	19	-	ns
Turn-Off Delay Time at V_{DS} = 15 V, I_D = 5 A, V_{GS} = 10 V, R_G = 1 Ω	t _{d(off)}	-	8	-	ns
Turn-Off Fall Time at V_{DS} = 15 V, I_D = 5 A, V_{GS} = 10 V, R_G = 1 Ω	t _f	-	6.5	-	ns
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at $V_{GS} = 0 \text{ V}$, $I_S = 1 \text{ A}$	V _{SD}	-	-	1	٧
Body-Diode Continuous Current	ls	-	-	5.8	Α
Body Diode Reverse Recovery Time at I _S = 5 A, di/dt = 100 A / μs	t _{rr}	-	5.6	-	nS
Body Diode Reverse Recovery Charge at I _S = 5 A, di/dt = 100 A / μs	Qrr	-	1.4	-	nC

Electrical Characteristics Curves


Fig. 2 Typical Transfer Characteristics 30 V_{DS} =5V25 Tj=25°C Tj=125°C I_D, Drain Current (A) 20 15 10 5 0 0 1 3 V_{GS}, Gate-Source Voltage (V)


Fig. 3 On-Resistance vs. Drain Current

Electrical Characteristics Curves

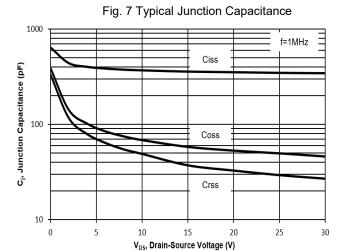


Fig. 8 Drain-Source Leakage Current vs. T_j

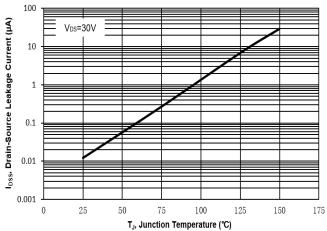


Fig. 9 $V_{(BR)DSS}$ vs. Junction Temperature

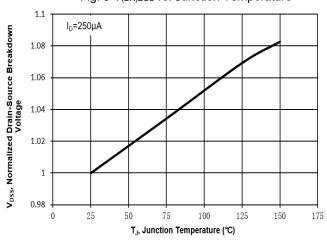


Fig. 10 Gate Threshold Variation vs. T_j

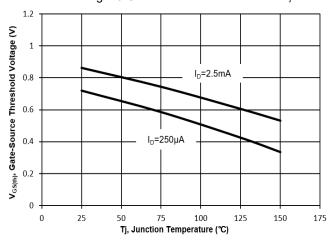
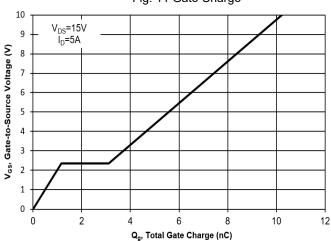
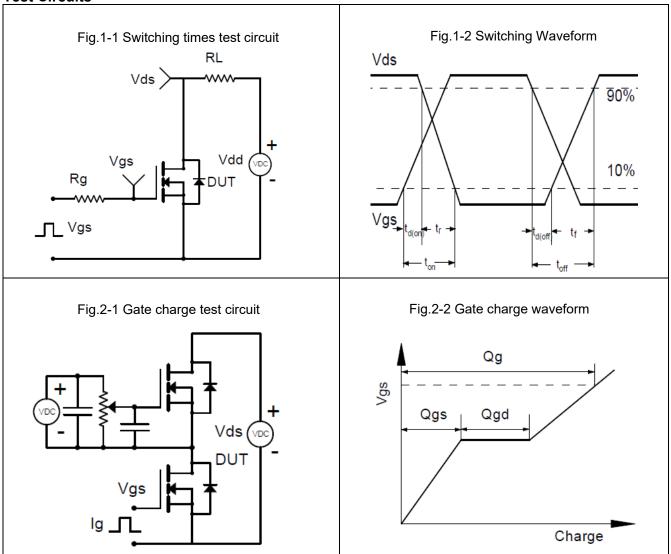
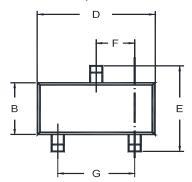
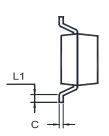
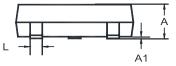




Fig. 11 Gate Charge

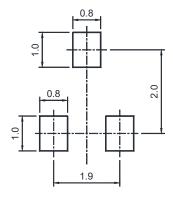

Test Circuits





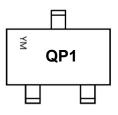
Package Outline (Dimensions in mm)

SOT-23



Unit	Α	A1	В	С	D	Е	F	G	L	L1
mana	1.20	0.100	1.40	0.19	3.04	2.6	1.02	2.04	0.51	0.2
mm	0.89	0.013	1.20	0.08	2.80	2.2	0.89	1.78	0.37	MIN

Recommended Soldering Footprint


Packing information

doking inioi	mation					
Package	Tape Width (mm)	Pitch		Reel Size		
		mm	inch	mm	inch	Per Reel Packing Quantity
SOT-23	8	4 ± 0.1	0.157 ± 0.004	178	7	3,000

Marking information

- " QP1 " = Part No.
- " YM " = Date Code Marking
- " Y " = Year
- " M " = Month

Font type: Arial

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

