N-Channel Enhancement Mode MOSFET

Features

- Built-in G-S Protection Diode
- Typical ESD Protection HBM Class 1C

Classification	Voltage Range(V)
OA	<125
OB	125 to <250
1A	250 to <500
1B	500 to <1000
1C	1000 to <2000
2	2000 to <4000
3A	4000 to <8000
3B	≥ 8000

1. Gate 2. Source 3. Drain SOT-23 Plastic Package

Applications

- Portable appliances
- Battery management

Absolute Maximum Ratings(at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V_{DS}	30	V
Gate-Source Voltage	V_{Gs}	± 12	V
Drain Current	I_{D}	4	A
Peak Drain Current, Pulsed ${ }^{1)}$	IDM	20	A
Power Dissipation ${ }^{2)}$	$\mathrm{P}_{\text {tot }}$	1	W
Max Operating Junction Temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance from Junction to Ambient ${ }^{2)}$	R $_{\text {®JA }}$	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^0]Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min.	Typ.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at $\mathrm{ID}=250 \mu \mathrm{~A}$	$V_{\text {(BR) }}$ DSS	30	-	-	V
Zero Gate Voltage Drain Current at $\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V}$	Idss	-	-	1	$\mu \mathrm{A}$
Gate-Source Leakage at $\mathrm{V}_{\mathrm{GS}}= \pm 10 \mathrm{~V}$	Igss	-	-	± 10	$\mu \mathrm{A}$
Gate-Source Threshold Voltage at $V_{D S}=V_{G S}, I_{D}=250 \mu \mathrm{~A}$	$\mathrm{V}_{\text {GS(th) }}$	0.4	-	1	V
$\begin{aligned} & \text { Drain-Source On-State Resistance } \\ & \text { at } \mathrm{V}_{G S}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~A} \\ & \text { at } \mathrm{V}_{G S}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A} \\ & \text { at } \mathrm{V}_{G S}=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A} \end{aligned}$	RDS(on)		-	$\begin{gathered} 56 \\ 72 \\ 109 \\ \hline \end{gathered}$	$\mathrm{m} \Omega$
DYNAMIC PARAMETERS					
Forward Transconductance at $\mathrm{V}_{\mathrm{DS}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~A}$	$\mathrm{gfs}_{\text {f }}$	-	8.8	-	S
Gate resistance at $\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Rg_{g}	-	1.5	-	$\mathrm{K} \Omega$
Input Capacitance at $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Ciss	-	387	-	pF
Output Capacitance at $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Coss	-	37	-	pF
Reverse Transfer Capacitance at $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Crss	-	10	-	pF
Gate charge total $\begin{aligned} & \text { at } V_{D S}=15 \mathrm{~V}, I_{D}=4 \mathrm{~A}, \mathrm{~V}_{G S}=10 \mathrm{~V} \\ & \text { at } \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~A}, \mathrm{~V}_{G S}=4.5 \mathrm{~V} \end{aligned}$	Q_{g}	-	$\begin{gathered} 14.5 \\ 7 \end{gathered}$	-	nC
Gate to Source Charge at $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	$Q_{\text {gs }}$	-	1.2	-	nC
Gate to Drain Charge at $\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	$Q_{\text {gd }}$	-	2.6	-	nC
$\begin{aligned} & \text { Turn-On Delay Time } \\ & \text { at } \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=1 \Omega \end{aligned}$	$\mathrm{t}_{\text {d}}$ (on)	-	1138	-	ns
$\begin{aligned} & \text { Turn-On Rise Time } \\ & \text { at } \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=1 \Omega \end{aligned}$	t_{r}	-	68	-	ns
$\begin{aligned} & \text { Turn-Off Delay Time } \\ & \text { at } \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=1 \Omega \end{aligned}$	$\mathrm{t}_{\text {d(off) }}$	-	892	-	ns
Turn-Off Fall Time at $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=1 \Omega$	t_{f}	-	98	-	ns
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at $\mathrm{Is}=1 \mathrm{~A}$	Vsd	-	-	1.2	V
Body-Diode Continuous Current	Is	-	-	4	A
Body Diode Reverse Recovery Time at $\mathrm{I}_{\mathrm{s}}=4 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	$t_{\text {rr }}$	-	607	-	ns
Body Diode Reverse Recovery Charge at $\mathrm{I}_{\mathrm{s}}=4 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	Qrr	-	3.2	-	$\mu \mathrm{C}$

®

Electrical Characteristics Curves

Fig. 1 Typical Output Characteristics

Fig. 3 on-Resistance vs. Drain Current

Fig. 5 on-Resistance vs. T_{j}

Fig. 2 Typical Transfer Characteristics

Fig. 4 on-Resistance vs. Gate-Source Voltage

Fig. 6 Typical Forward Characteristics

Electrical Characteristics Curves

Fig. 7 Typical Junction Capacitance

Fig. $9 \mathrm{~V}_{\text {(BR)Dss }}$ vs. Junction Temperature

Fig. 11 Gate Charge

Fig. 8 Drain-Source Leakage Current vs. T_{j}

Fig. 10 Gate Threshold Variation vs. T_{j}

Test Circuits

Package Outline (Dimensions in mm)

Unit	A	A1	B	C	D	E	F	G	L	L1
mm	1.20	0.100	1.40	0.19	3.04	2.6	1.02	2.04	0.51	0.2
	0.89	0.013	1.20	0.08	2.80	2.2	0.89	1.78	0.37	MIN

Recommended Soldering Footprint

Packing information

Package	Tape Width (mm)	Pitch		Reel Size		Per Reel Packing Quantity
		mm	inch	mm	inch	
SOT-23	8	4 ± 0.1	0.157 ± 0.004	178	7	3,000

Marking information

" UE " = Part No.
" YM " = Date Code Marking
" Y" = Year
" M " = Month
Font type: Arial

[^1] reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

[^0]: ${ }^{1)}$ Pulse Test: Pulse Width $\leq 100 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$, Repetitive rating, pulse width limited by junction temperature $T_{J(M A X)}=150^{\circ} \mathrm{C}$.
 ${ }^{2)}$ Device mounted on FR-4 substrate PC board, 2 oz copper, with 1-inch square copper plate.

[^1]: Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and

