
N-Channel Enhancement Mode Power MOSFET

Features

- AEC-Q101 Qualified
- Ideal for Low Profile Applications
- Low On-Resistance
- Low Gate Threshold Voltage
- Halogen and Antimony Free(HAF), RoHS compliant

Applications

- Battery Management Application
- Power Management Functions
- DC-DC Converters

Absolute Maximum Ratings (at Ta = 25°C unless otherwise specified)

<u> </u>	-	•		
Parameter	Symbol	Value	Unit	
Drain-Source Voltage		V _{DS}	30	V
Gate-Source Voltage		V _{GS}	± 20	V
Drain Current at V _{GS} = 10 V, Steady State	T _a = 25°C T _a = 70°C	ID	10 8	Α
Drain Current at V _{GS} = 10 V, t < 10 s	T _a = 25°C T _a = 70°C	ID	12 9	Α
Pulsed Drain Current 1)		I _{DM}	50	Α
Avalanche Current		las	20	А
Single Pulse Avalanche Energy 4)		E _{AS}	20	mJ
Total Power Dissipation 2)	T _a = 25°C T _a = 70°C	P _{tot}	1.4 0.85	W
Operating Junction and Storage Temperatur	T_{j} , T_{stg}	- 55 to + 150	°C	

Thermal Characteristics

Parameter		Symbol	Max.	Unit
Thermal Resistance from Junction to Ambient ²⁾	Steady State t < 10 s	R _θ ЈА	90 75	°C/W
Thermal Resistance from Junction to Ambient 3)	Steady State t < 10 s	R _θ ЈА	125 100	°C/W

¹⁾ Pulse Test: Pulse Width ≤ 100 μs, Duty Cycle ≤ 2%, Repetitive rating, pulse width limited by junction temperature T_{J(MAX)} = 150°C.

²⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

³⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout.

⁴⁾ Limited by $T_{J(max)}$, starting $T_J = 25$ °C, L = 0.1 mH, $R_g = 25 \Omega$, $I_{AS} = 20A$, $V_{GS} = 10 V$.

Characteristics at Ta = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at I _D = 250 μA	BV _{DSS}	30	-	-	V
Drain-Source Leakage Current at V_{DS} = 30 V	I _{DSS}	-	-	1	μΑ
Gate Leakage Current at V _{GS} = ± 20 V	Igss	-	-	± 100	nA
Gate-Source Threshold Voltage at V_{DS} = V_{GS} , I_D = 250 μ A	V _{GS(th)}	1	-	2	V
Drain-Source On-State Resistance at V_{GS} = 10 V, I_D = 11 A at V_{GS} = 4.5 V, I_D = 9 A	R _{DS(on)}	- -	- -	12 16	mΩ
DYNAMIC PARAMETERS					
Gate resistance at $V_{DS} = 0 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	Rg	-	1.8	-	Ω
Input Capacitance at V_{DS} = 15 V, V_{GS} = 0 V, f = 1 MHz	C _{iss}	-	1128	-	pF
Output Capacitance at V_{DS} = 15 V, V_{GS} = 0 V, f = 1 MHz	Coss	-	151	-	pF
Reverse Transfer Capacitance at V_{DS} = 15 V, V_{GS} = 0 V, f = 1 MHz	Crss	-	106	-	pF
Total Gate Charge at V_{DS} = 15 V, I_D = 10 A, V_{GS} = 10 V at V_{DS} = 15 V, I_D = 10 A, V_{GS} = 4.5 V	Q_g	-	25 11	-	nC
Gate to Source Charge at V_{DS} = 15 V, I_D = 10 A, V_{GS} = 10 V	Q_{gs}	-	5.1	-	nC
Gate to Drain Charge at V_{DS} = 15 V, I_D = 10 A, V_{GS} = 10 V	Q_{gd}	-	6.5	-	nC
Turn-On Delay Time at V_{DD} = 15 V, V_{GS} = 10 V, I_D = 10 A, R_G = 4.7 Ω	t _{d(on)}	-	15.8	-	ns
Turn-On Rise Time at V_{DD} = 15 V, V_{GS} = 10 V, I_D = 10 A, R_G = 4.7 Ω	t _r	-	72.5	-	ns
Turn-Off Delay Time at V_{DD} = 15 V, V_{GS} = 10 V, I_D = 10 A, R_G = 4.7 Ω	$t_{d(off)}$	-	15.5	-	ns
Turn-Off Fall Time at V_{DD} = 15 V, V_{GS} = 10 V, I_D = 10 A, R_G = 4.7 Ω	t _f	-	22	-	ns
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at I _S = 1 A, V _{GS} = 0 V	V _{SD}	-	0.8	1.2	V
Body-Diode Continuous Current	Is	-	-	10	Α
Body Diode Reverse Recovery Time at I _S = 10 A, di/dt = 100 A / μs	t _{rr}	-	11	-	ns
Body Diode Reverse Recovery Charge at I _S = 10 A, di/dt = 100 A / µs	Q _{rr}	-	3.2	-	nc

Electrical Characteristics Curves

Fig. 1 Typical Output Characteristics

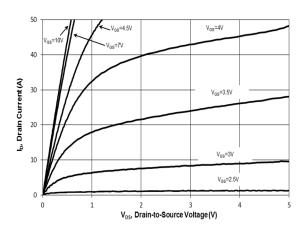


Fig. 3 R_{DS(on)} vs. Gate-Source Voltage

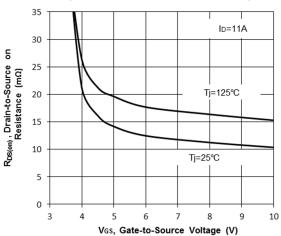


Fig. 5 on-Resistance vs. Drain Current

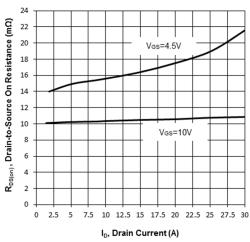


Fig. 2 Typical Transfer Characteristics

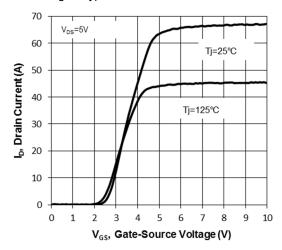


Fig. 4 on-Resistance vs.T_j

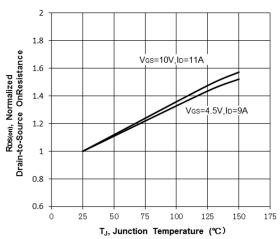
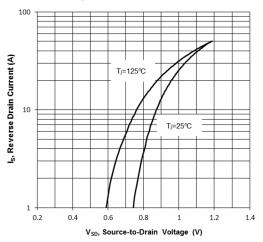



Fig. 6 Forward Characteristics

Electrical Characteristics Curves

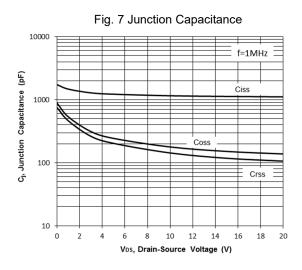


Fig. 9 Gate Threshold Variation vs. Tj

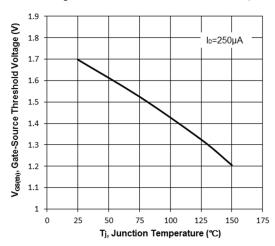


Fig.11 B_{VDSS} vs. Temperature

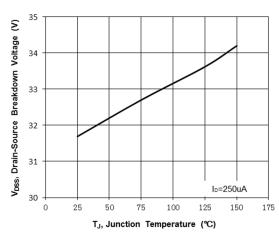


Fig. 8 Gate Charge

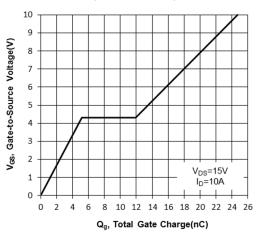


Fig. 10 Drain Leakage Current vs. Tj

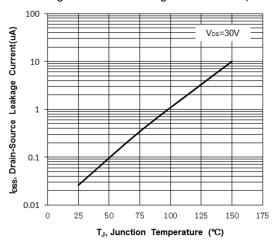
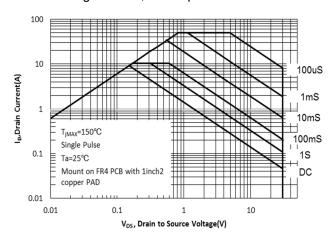



Fig.12 SOA, safe Operation Area

Electrical Characteristics Curves

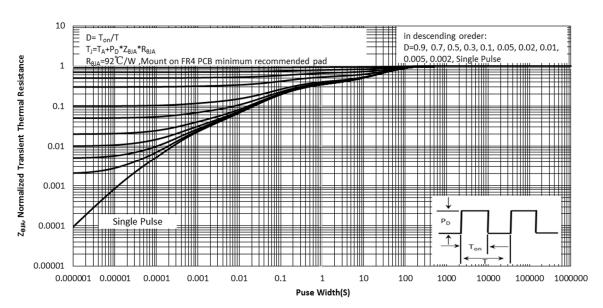
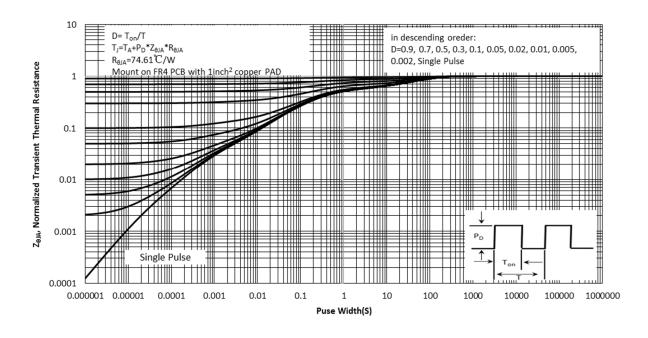
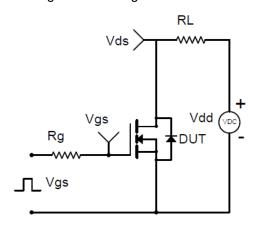



Fig.13 Transient Thermal Resistance



Test Circuits

Fig.1-1 Switching times test circuit

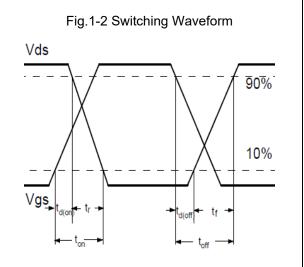


Fig.2-1 Gate charge test circuit

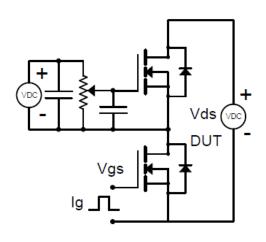


Fig.2-2 Gate charge waveform

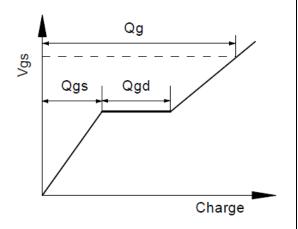


Fig.3-1 Avalanche test circuit

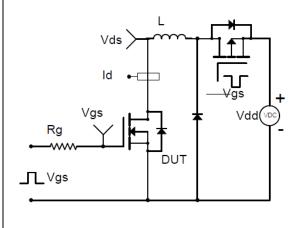
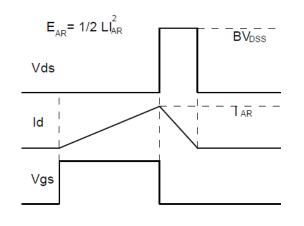
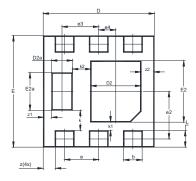




Fig.3-2 Avalanche waveform



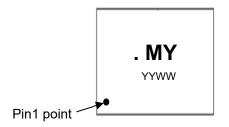
Package Outline Dimensions (Units: mm)

DFN2020-6HMA

UNIT	Α	A1	A3	b	D	D2	D2a	E	E2	E2a	L
mm	0.55	0	0.15	0.25	1.95	0.85	0.33	1.95	1.05	0.65	0.225
mm	0.65	0.05	Тур.	0.35	2.05	1.05	0.43	2.05	1.25	0.75	0.325

UNIT	е	e2	e3	e4	k	k1	k2	Z	z1	z2
mm	0.65	0.863	0.7	0.325	0.37	0.15	0.36	0.2	0.11	0.2
	BSC	BSC	BSC	BSC	BSC	BSC	BSC	BSC	BSC	BSC

Recommended Soldering Footprint


Packing information

5 .	Tape Width	ı	itch Reel		Size		
Package	(mm)	mm	inch	mm	inch	Per Reel Packing Quantity	
DFN2020-6HMA	8	4 ± 0.1	0.157 ± 0.004	178	7	4,000	

Marking information

- " MY " = Part No.
- " " = HAF (Halogen and Antimony Free)
- " YYWW " = Date Code Marking
- " Y " = Year (ex: 19 = 2019)
- "W" = Week (ex: 09 = the 9th week of the year)

Font type: Arial

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

