
N-Channel Enhancement Mode MOSFET

Features

• Surface-mounted package

Gate Source

1. Gate 2. Source 3. Drain SOT-23 Plastic Package

Applications

- · Portable appliances
- Battery management

Absolute Maximum Ratings(at T_a = 25℃ unless otherwise specified)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	V _{GS}	± 20	V	
Continuous Drain Current	ID	2	Α	
Peak Drain Current, Pulsed 1)	I _{DM}	8	Α	
Total Power Dissipation 2)	P _{tot}	350	mW	
Operating Junction and Storage Temperature Range	T _j , T _{stg}	- 55 to + 150	°C	

Thermal Characteristics

Parameter	Symbol	Max.	Unit	
Thermal Resistance from Junction to Ambient 2)	Reja	357	°C/W	

¹⁾ Pulse Test: Pulse Width ≤ 100 μs, Duty Cycle ≤ 2%, Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ = 150°C.

²⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout.

MMFTN2324

Characteristics at Ta = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at I _D = 250 μA	V _{(BR)DSS}	100	-	-	V
Zero Gate Voltage Drain Current at V _{DS} = 100 V	I _{DSS}	-	-	1	μA
Gate-Source Leakage at V _{GS} = ± 20 V	I _{GSS}	-	-	± 100	nA
Gate-Source Threshold Voltage at $V_{GS} = V_{DS}$, $I_D = 250 \mu A$	V _{GS(th)}	1.2	-	2.8	V
Drain-Source On-State Resistance at V_{GS} = 10 V, I_D = 1.5 A at V_{GS} = 6 V, I_D = 1 A at V_{GS} = 4.5 V, I_D = 0.5 A	R _{DS(on)}	- - -	- - -	234 267 278	mΩ
DYNAMIC PARAMETERS					
Forward Transconductance at $V_{DS} = 5 \text{ V}$, $I_D = 1.5 \text{ A}$	g _{Fs}	-	10	-	S
Gate Resistance at $V_{DS} = 0 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	Rg	-	1.1	-	Ω
Input Capacitance at $V_{DS} = 50 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	Ciss	-	1155	-	pF
Output Capacitance at V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz	Coss	-	28	-	pF
Reverse Transfer Capacitance at V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz	Crss	-	25	-	pF
Gate Charge Total at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 1.5 A at V_{DS} = 50 V, V_{GS} = 4.5 V, I_D = 1.5 A	Qg	- -	20 9	- -	nC
Gate to Source Charge at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 1.5 A	Q _{gs}	-	4	-	nC
Gate to Drain Charge at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 1.5 A	Q_{gd}	-	2.4	-	nC
Turn-On Delay Time at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 1.5 A, R_g = 3.3 Ω	t _{d(on)}	-	14	-	ns
Turn-On Rise Time at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 1.5 A, R_g = 3.3 Ω	t _r	-	4	-	ns
Turn-Off Delay Time at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 1.5 A, R_g = 3.3 Ω	$t_{\text{d(off)}}$	-	13	-	ns
Turn-Off Fall Time at V_{DS} = 50 V, V_{GS} = 10 V, I_D = 1.5 A, R_g = 3.3 Ω	t _f	-	2	-	ns
Body-Diode PARAMETERS			1	1	Γ
Drain-Source Diode Forward Voltage at I _S = 1.3 A, V _{GS} = 0 V	V _{SD}	-	-	1.2	V
Body-Diode Continuous Current	Is	-	-	2	Α
Body Diode Reverse Recovery Time at I _S = 1.5 A, di/dt = 100 A / μs	t _{rr}	-	21	-	ns
Body Diode Reverse Recovery Charge at I _S = 1.5 A, di/dt = 100 A / μs	Qrr	-	22	-	nC

Electrical Characteristics Curves

ectrical Characteristics Curves

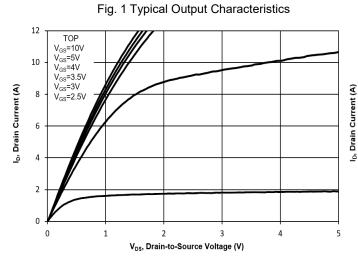


Fig. 2 Typical Transfer Characteristics

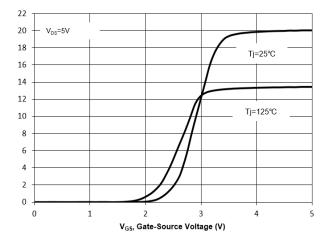


Fig. 3 On-Resistance vs. Drain Current

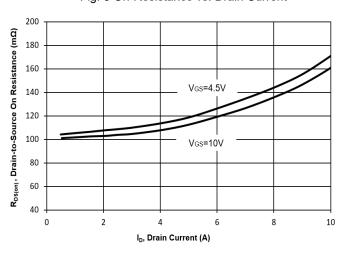


Fig. 4 On-Resistance vs. Gate-Source Voltage

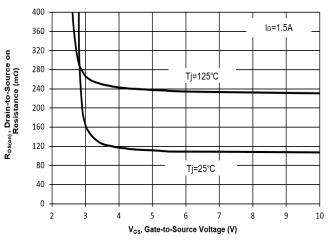


Fig. 5 On-Resistance vs.Ti

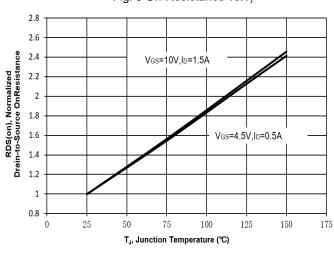
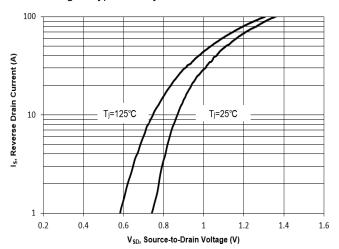
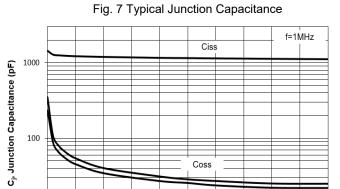



Fig. 6 Typical Body-Diode Forward Characteristics

10

0


10

20

30

40

Electrical Characteristics Curves

Crss

60

70

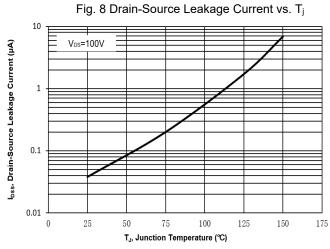
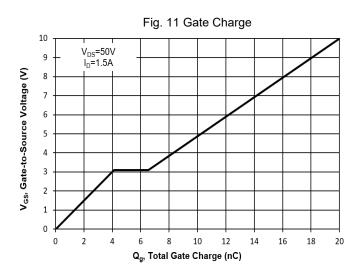
80

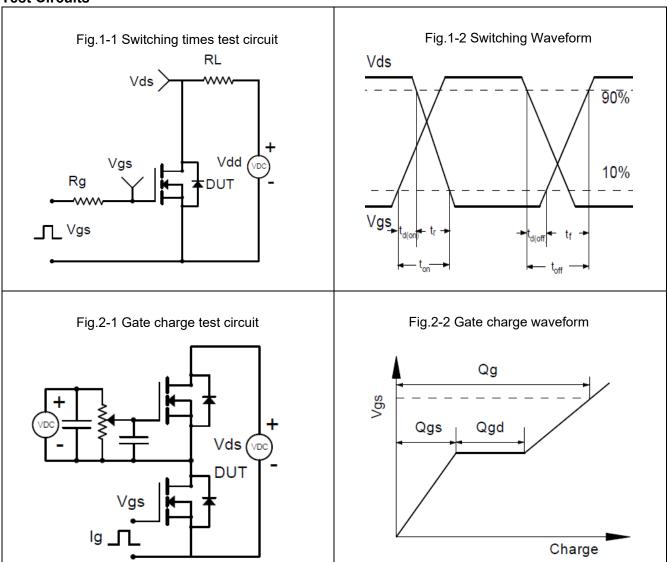
90

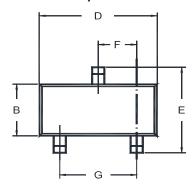
100

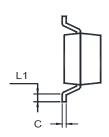
50

Vos, Drain-Source Voltage (V)

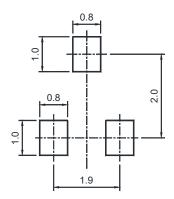

Fig. 9 $V_{(BR)DSS}$ vs. Junction Temperature 1.14 V_{DSS}, Normalized Drain-Source Breakdown Voltage I⊳=250µA 1.12 1.1 1.08 1.06 1.04 1.02 1 0.98 0 25 100 125 150 175 $\textbf{T}_J,$ Junction Temperature (°C)


Test Circuits



Package Outline (Dimensions in mm)

SOT-23



Unit	Α	A1	В	С	D	E	F	G	L	L1
	1.20	0.100	1.40	0.19	3.04	2.6	1.02	2.04	0.51	0.2
mm	0.89	0.013	1.20	0.08	2.80	2.2	0.89	1.78	0.37	MIN

Recommended Soldering Footprint

Packing information

acking into						
Package	Tape Width	Pit	tch	Reel	Size	
	(mm)	mm	inch	mm	inch	Per Reel Packing Quantity
SOT-23	8 4 ± 0.1 0.157 ± 0.004		0.157 ± 0.004	178	7	3,000

Marking information

" M24 " = Part No.

" YM " = Date Code Marking

" Y " = Year

" M " = Month

Font type: Arial

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

