
N-Channel Enhancement Mode MOSFET

Features

- AEC-Q101 Qualified
- Low Gate Threshold Voltage
- Low Input Capacitance
- Fast Switching Speed
- Built-in G-S Protection Diode
- Halogen and Antimony Free(HAF), RoHS compliant
- Typical ESD Protection HBM Class 2

1.Gate 2.Source 3.Drain SOT-523 Plastic Package

Classification	Voltage Range(V)
0A	< 125
0B	125 to < 250
1A	250 to < 500
1B	500 to < 1000
1C	1000 to < 2000
2	2000 to < 4000
3A	4000 to < 8000
3B	≥ 8000

Application

- Portable appliances
- Battery management

Absolute Maximum Ratings (at Ta = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	20	V	
Gate-Source Voltage	V _{GS}	± 8	V	
Drain Current	lD	630	mA	
Peak Drain Current, Pulsed ¹⁾	Ідм	3	А	
Total Power Dissipation	P _{tot}	150 ²⁾ 280 ³⁾	mW	
Operating Junction and Storage Temperature Range	Tj, Tstg	- 55 to + 150	C°	

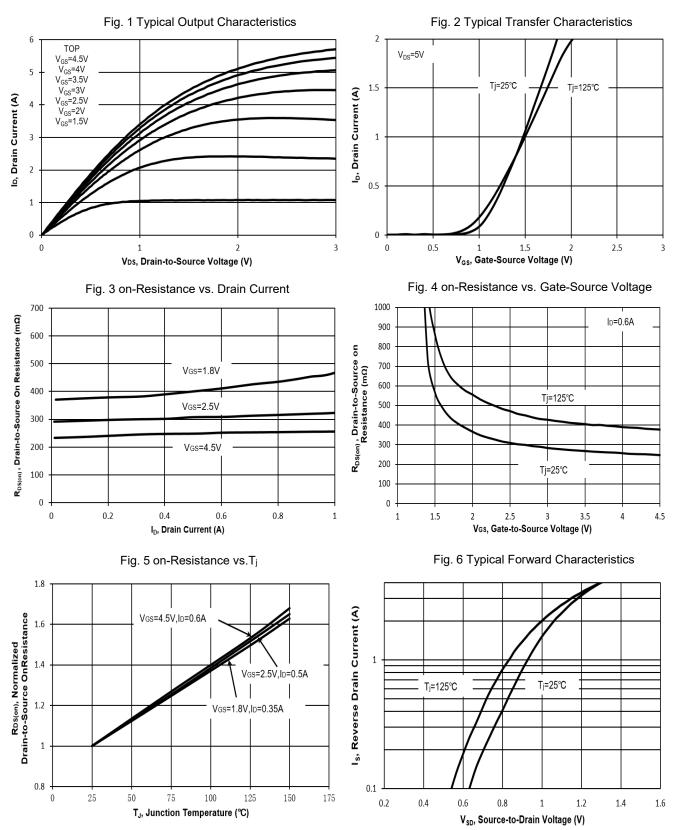
Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Ambient	Reja	833 ²⁾ 446 ³⁾	°C/W

¹⁾ Pulse Test: Pulse Width \leq 100 µs, Duty Cycle \leq 2%, Repetitive rating, pulse width limited by junction temperature T_{J(MAX)} = 150°C.

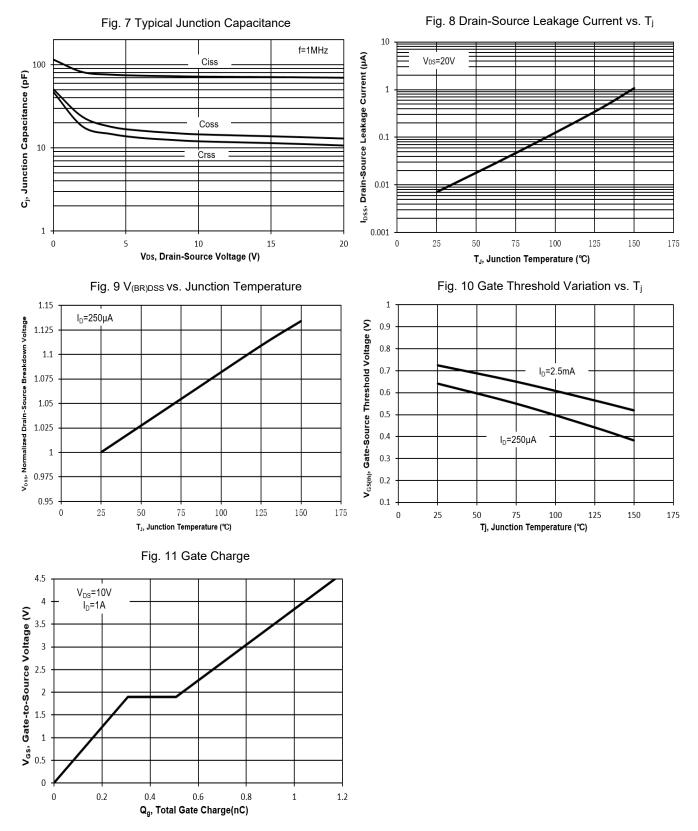
²⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout.

³⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.

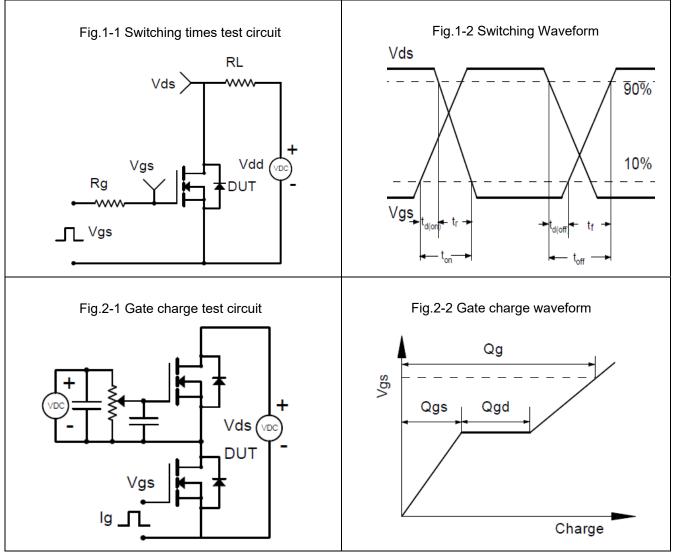


Characteristics at Ta = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at I _D = 250 μA	V _{(BR)DSS}	20	-	-	V
Drain-Source Leakage Current at V _{DS} = 20 V	IDSS	-	-	100	nA
Gate-Source Leakage Current at $V_{GS} = \pm 4.5 V$ at $V_{GS} = \pm 8 V$	lgss	-	-	± 1 ± 10	μA
Gate-Source Threshold Voltage at V _{DS} = V _{GS} , I _D = 250 µA	$V_{GS(th)}$	0.5	-	1	V
Drain-Source On-State Resistance at V_{GS} = 4.5 V, I_D = 600 mA at V_{GS} = 2.5 V, I_D = 500 mA at V_{GS} = 1.8 V, I_D = 350 mA	RDS(on)	- -	- -	0.4 0.5 0.7	Ω
DYNAMIC PARAMETERS					
Forward Transconductance at V _{DS} = 10 V, I _D = 400 mA	g fs	-	1.4	-	S
Input Capacitance at V _{GS} = 0 V, V _{DS} = 10 V, f = 1 MHz	C _{iss}	-	72	-	pF
Output Capacitance at V_{GS} = 0 V, V_{DS} = 10 V, f = 1 MHz	Coss	-	14	-	pF
Reverse Transfer Capacitance at V_{GS} = 0 V, V_{DS} = 10 V, f = 1 MHz	Crss	-	12	-	pF
Gate charge total at V_{DS} = 10 V, I_D = 1 A, V_{GS} = 4.5 V at V_{DS} = 10 V, I_D = 1 A, V_{GS} = 2.5 V	Qg	-	1.1 0.65	-	nC
Gate to Source Charge at V_{DS} = 10 V, I_D = 1 A, V_{GS} = 4.5 V	Q_{gs}	-	0.3	-	nC
Gate to Drain Charge at V_{DS} = 10 V, I_D = 1 A, V_{GS} = 4.5 V	Q_gd	-	0.2	-	nC
Turn-On Delay Time at V _{GS} = 4.5 V, V _{DS} = 10 V, I _D = 0.5 A, R _g = 10 Ω	t _{d(on)}	-	12	-	nS
Turn-On Rise Time at V _{GS} = 4.5 V, V _{DS} = 10 V, I _D = 0.5 A, R _g = 10 Ω	tr	-	6	-	nS
Turn-Off Delay Time at V _{GS} = 4.5 V, V _{DS} = 10 V, I _D = 0.5 A, R _g = 10 Ω	$t_{d(\text{off})}$	-	13	-	nS
Turn-Off Fall Time at V _{GS} = 4.5 V, V _{DS} = 10 V, I _D = 0.5 A, R _g = 10 Ω	t _f	-	10	-	nS
Body-Diode PARAMETERS					
Diode Forward Voltage at Is = 150 mA	Vsd	-	-	1.2	V
Body-Diode Continuous Current	ls	-	-	630	mA
Body Diode Reverse Recovery Time at I _S = 1 A, di/dt = 100 A / μs	t _{rr}	-	5.2	-	nS
Body Diode Reverse Recovery Charge at I _S = 1 A, di/dt = 100 A / μs	Qrr	-	1.2	-	nC

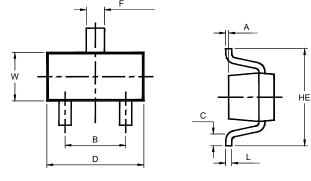


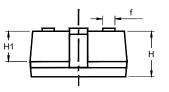
Electrical Characteristics Curves


Electrical Characteristics Curves

MMFTN1012KE-CH

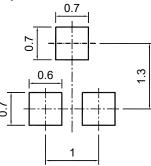
Test Circuits





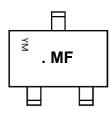
MMFTN1012KE-CH

Package Outline (Dimensions in mm)



UNIT	А	В	С	D	Н	H1	HE	F	f	L	W
mm	0.1	1.05	0.17	1.7	0.85	0.6	1.7	0.35	0.25	0.15	0.9
mm	MAX.	0.95	MIN.	1.5	0.65	0.4	1.5	0.25	0.15	0.05	0.7

Recommended Soldering Footprint



Packing information

Tape Width		Pit	tch	Reel	Size		
Package (mm)	(mm)	mm	inch	mm	inch	Per Reel Packing Quantity	
SOT-523	8	4 ± 0.1	0.157 ± 0.004	178	7	4,000	

Marking information

- " MF " = Part No.
- " " = HAF (Halogen and Antimony Free)
- " YM " = Date Code Marking
- " Y " = Year
- " M " = Month
- Font type: Arial

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

