Complementary NPN/PNP Silicon Epitaxial Planar Digital Transistor

For switching and interface circuit and drivecircuit applications

Features

- Transistors with different polarity and built-in bias resistors R1 and R2
- Simplification of circuit design
- Reduces number of components and board space

TR1: 1. Emitter 2. Base 6. Collector TR2: 4. Emitter 5. Base 3. Collector SOT-363 Plastic Package

Absolute Maximum Ratings at $\left(\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$:TR1

Parameter	Symbol	Value	Unit
Collector Base Voltage	$\mathrm{V}_{\text {сво }}$	50	V
Collector Emitter Voltage	$\mathrm{V}_{\text {сео }}$	50	V
Emitter Base Voltage	$\mathrm{V}_{\text {EBO }}$	10	V
Collector Current	I_{C}	100	mA

Absolute Maximum Ratings at $\left(\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$: TR 2

Parameter	Symbol	Value	Unit
Collector Base Voltage	$-\mathrm{V}_{\text {CBO }}$	50	V
Collector Emitter Voltage	$-\mathrm{V}_{\text {CEO }}$	50	V
Emitter Base Voltage	$-\mathrm{V}_{\text {EBO }}$	10	V
Collector Current	$-\mathrm{I}_{\mathrm{C}}$	100	mA

Absolute Maximum Ratings at $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$:TR1 and TR2

Parameter	Symbol	Value	Unit
Total Power Dissipation	$\mathrm{P}_{\text {tot }}$	200	mW
Junction Temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction to Ambient ${ }^{1)}$	$\mathrm{R}_{\theta \mathrm{JA}}$	625	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^0]MMDTX241DW
Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$:TR1

Parameter	Symbol	Min.	Typ.	Max.	Unit
$\begin{aligned} & \text { DC Current Gain } \\ & \text { at } \mathrm{V}_{C E}=5 \mathrm{~V}, \mathrm{IC}_{\mathrm{C}} 10 \mathrm{~mA} \end{aligned}$	$h_{\text {FE }}$	70	-	-	-
$\begin{aligned} & \text { Collector Base Cutoff Current } \\ & \text { at } \mathrm{V}_{C B}=50 \mathrm{~V} \end{aligned}$	Icbo	-	-	100	nA
Collector Emitter Cutoff Current at $\mathrm{V}_{\text {Ce }}=50 \mathrm{~V}$	Iceo	-	-	500	nA
Emitter Base Cutoff Current at $\mathrm{V}_{\mathrm{EB}}=10 \mathrm{~V}$	Iebo	0.17	-	0.33	mA
Collector Emitter Saturation Voltage at $\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0.25 \mathrm{~mA}$	$\mathrm{V}_{\text {CE(sat) }}$	-	-	0.3	V
$\begin{aligned} & \text { Input Voltage (OFF) } \\ & \text { at } \mathrm{V}_{C E}=5 \mathrm{~V}, \mathrm{IC}_{\mathrm{C}}=100 \mu \mathrm{~A} \end{aligned}$	$\mathrm{V}_{\text {IOFF }}$	1	-	1.5	V
$\begin{aligned} & \text { Input Voltage }(\mathrm{ON}) \\ & \text { at } \mathrm{V}_{\mathrm{CE}}=0.2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\text {ION }}$	1.3	-	3	V
Gain Bandwidth Product at $\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}$	f_{T}	-	250	-	MHz
Collector Output Capacitance at $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Cob	-	-	6	pF
Input Resistance	R_{1}	15.4	22	28.6	K Ω
Resistance Ratio	$\mathrm{R}_{1} / \mathrm{R}_{2}$	0.9	1	1.1	-

Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$:TR2

Parameter	Symbol	Min.	Typ.	Max.	Unit
$\begin{aligned} & \text { DC Current Gain } \\ & \text { at - } \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} \end{aligned}$	$h_{\text {FE }}$	70	-	-	-
Collector Base Cutoff Current at $-\mathrm{V}_{\mathrm{CB}}=50 \mathrm{~V}$	-Ісво	-	-	100	nA
Collector Emitter Cutoff Current at $-\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}$	-Iceo	-	-	500	nA
Emitter Base Cutoff Current at $-V_{E B}=10 \mathrm{~V}$	-lebo	0.17	-	0.33	mA
Collector Emitter Saturation Voltage at $-\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA},-\mathrm{I}_{\mathrm{B}}=0.25 \mathrm{~mA}$	- $\mathrm{V}_{\text {cE(sat) }}$	-	-	0.3	V
$\begin{aligned} & \text { Input Voltage (OFF) } \\ & \text { at }-\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V},-\mathrm{IC}_{\mathrm{C}}=100 \mu \mathrm{~A} \\ & \hline \end{aligned}$	$-\mathrm{V}_{\text {I(OFF) }}$	1	-	1.5	V
$\begin{aligned} & \text { Input Voltage }(\mathrm{ON}) \\ & \text { at }-\mathrm{V}_{\mathrm{CE}}=0.2 \mathrm{~V},-\mathrm{IC}_{\mathrm{C}}=5 \mathrm{~mA} \end{aligned}$	$-V_{\text {loon })}$	1.3	-	3	V
Gain Bandwidth Product at $-\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V},-\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}$	f_{T}	-	200	-	MHz
Collector Output Capacitance at $-\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Cob	-	-	6	pF
Input Resistance	R_{1}	15.4	22	28.6	$\mathrm{K} \Omega$
Resistance Ratio	$\mathrm{R}_{1} / \mathrm{R}_{2}$	0.9	1	1.1	-

MMDTX241DW

Electrical Characteristics Curves :TR1

Fig 1. $\mathrm{V}_{\mathrm{I}(\mathrm{ON})}$ vs. Collector Current

Fig 3. DC Current Gain vs. Collector Current

Fig 2. $\mathrm{V}_{\text {I(off) }}$ vs. Collector Current

Fig 4. $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ vs. Collector Current

Electrical Characteristics Curves :TR2

Fig 1. $\mathrm{V}_{((O N)}$ vs. Collector Current

Fig 3. DC Current Gain vs. Collector Current

Fig 2. $\mathrm{V}_{\text {I(off) }}$ vs. Collector Current

Fig 4. $V_{C E(s a t)}$ vs. Collector Current

Unit	A	A 1	B	C	D	E	e 1	HE	Lp	bp
mm	1.0	0.1	1.3	0.25	2.2	1.35	0.65	2.2	0.4	0.3
	0.9	0	typ.	0.1	1.8	1.15	typ.	2.0	0.15	0.1

Recommended Soldering Footprint

Marking information

" D2 " = Part No.
"YM" = Date Code Marking
"Y" = Year
"M" = Month
Font type: Arial

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

[^0]: ${ }^{1)}$ Device mounted on FR-4 substrate PC board, 2 oz copper, with minimum recommended pad layout

