
P-Channel Enhancement Mode MOSFET

Features

Surface-mounted package

1. Gate 2. Source 3. Drain SOT-23 Plastic Package

Applications

Portable appliances

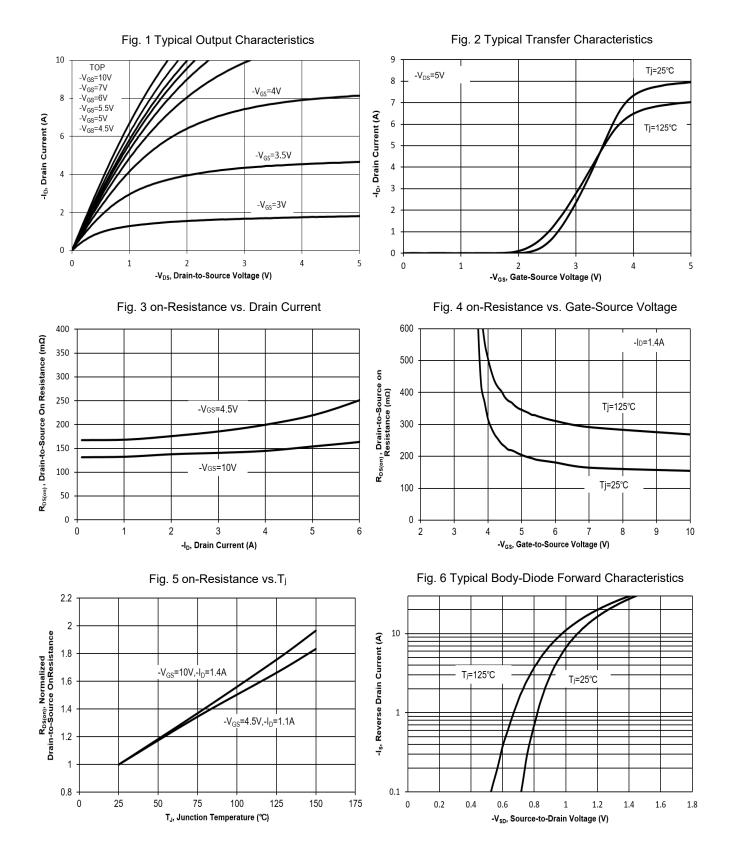
Battery management

Parameter	Symbol	Value	Unit
Drain-Source Voltage	-V _{DS}	30	V
Gate-Source Voltage	V _{GS}	± 20	V
Continuous Drain Current	-ID	2.5	А
Pulsed Drain Current $t_p = 10 \ \mu s$	-I _{DM}	6	А
Total Power Dissipation ¹⁾	P _{tot}	625	mW
Operating Junction and Storage Temperature Range	TJ, Tstg	- 55 to + 150	C°

Thermal Characteristics

Parameter	Symbol	Max.	Unit	
Thermal Resistance from Junction to Ambient ¹⁾	Reja	200	°C/W	

¹⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate.

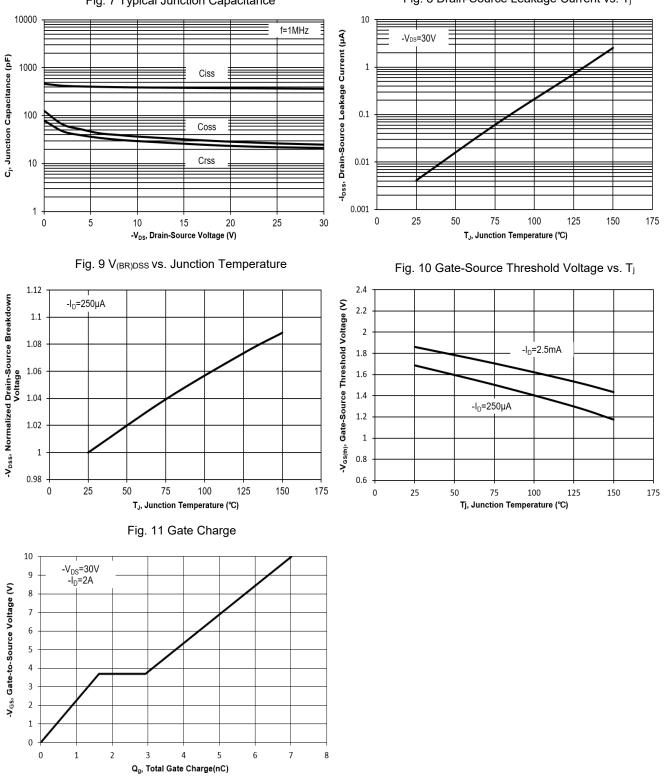


Characteristics at Ta = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS	I				
Drain-Source Breakdown Voltage at -I _D = 250 μA	-V _{(BR)DSS}	30	-	-	V
Drain-Source Leakage Current at -V _{DS} = 30 V	-I _{DSS}	-	-	1	μA
Gate-Source Leakage at V_{GS} = ± 16 V	lgss	-	-	± 100	nA
Gate-Source Threshold Voltage at V_{DS} = V_{GS} , $-I_D$ = 250 μ A	-V _{GS(th)}	1	-	3	V
Drain-Source On-State Resistance at -V _{GS} = 10 V, $-I_D$ = 1.4 A at -V _{GS} = 4.5 V, $-I_D$ = 1.1 A	R _{DS(on)}	-	-	210 330	mΩ
DYNAMIC PARAMETERS					
Forward Transconductance at $-V_{DS} = 5 V$, $-I_D = 1.4 A$	g fs	-	6	-	S
Gate resistance at V_{GS} = 0 V, V_{DS} = 0 V, f = 1 MHz	Rg	-	9.2	-	Ω
Input Capacitance at $V_{GS} = 0 V$, $-V_{DS} = 30 V$, f = 1 MHz	C _{iss}	-	361	-	pF
Output Capacitance at $V_{GS} = 0 V$, $-V_{DS} = 30 V$, f = 1 MHz	Coss	-	25	-	pF
Reverse Transfer Capacitance at V_{GS} = 0 V, -V _{DS} = 30 V, f = 1 MHz	C _{rss}	-	20	-	pF
Total Gate Charge at $-V_{GS} = 10 \text{ V}, -V_{DS} = 30 \text{ V}, -I_D = 1.4 \text{ A}$ at $-V_{GS} = 4.5 \text{ V}, -V_{DS} = 30 \text{ V}, -I_D = 1.4 \text{ A}$	Qg	-	7 3.2	-	nC
Gate to Source Charge at -V _{GS} = 10 V, -V _{DS} = 30 V, -I _D = 1.4 A	Q _{gs}	-	1.6	-	nC
Gate to Drain Charge at $-V_{GS}$ = 10 V, $-V_{DS}$ = 30 V, $-I_D$ = 1.4 A	Q _{gd}	-	1.3	-	nC
Turn-On Delay Time at -V _{GS} = 10 V, -V _{DD} = 30 V, -I _D = 1.4 A, R _G = 3.3 Ω	t _{d(on)}	-	5.7	-	ns
Turn-On Rise Time at -V _{GS} = 10 V, -V _{DD} = 30 V, -I _D = 1.4 A, R _G = 3.3Ω	tr	-	3.4	-	ns
Turn-Off Delay Time at -V _{GS} = 10 V, -V _{DD} = 30 V, -I _D = 1.4 A, R _G = 3.3 Ω	t _{d(off)}	-	7.5	-	ns
Turn-Off Fall Time at -V _{GS} = 10 V, -V _{DD} = 30 V, -I _D = 1.4 A, R _G = 3.3 Ω	t _f	-	1.8	-	ns
Body-Diode PARAMETERS	T		I	1	1
Body Diode Voltage at -Is = 1 A, V _{GS} = 0 V	-V _{SD}	-	-	1.2	V
Body-Diode Continuous Current	-ls	-	-	2.5	Α
Body Diode Reverse Recovery Time at $-I_S = 1.4 \text{ A}$, di/dt = 100 A / μ s	trr	-	8	-	ns
Body Diode Reverse Recovery Charge at $-I_s = 1.4 \text{ A}$, di/dt = 100 A / μ s	Qrr	-	3.6	-	nC

Electrical Characteristics Curves

Electrical Characteristics Curves



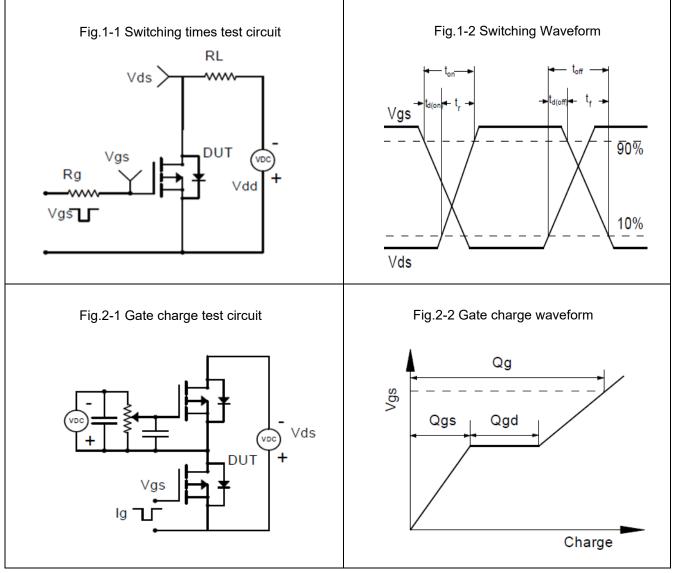
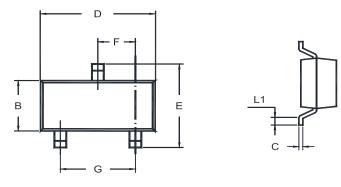
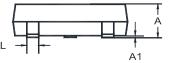
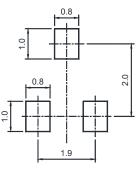

Fig. 7 Typical Junction Capacitance

Fig. 8 Drain-Source Leakage Current vs. Tj

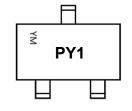

MKA03P330L


Test Circuits


Package Outline (Dimensions in mm)

Unit	А	A1	В	С	D	E	F	G	L	L1
	1.20	0.100	1.40	0.19	3.04	2.6	1.02	2.04	0.51	0.2
mm	0.89	0.013	1.20	0.08	2.80	2.2	0.89	1.78	0.37	MIN

Recommended Soldering Footprint



Packing information

Tape Width		Pit	tch	Reel	Size		
Package	(mm)	mm	inch	mm	inch	Per Reel Packing Quantity	
SOT-23	8	4 ± 0.1	0.157 ± 0.004	178	7	3,000	

Marking information

- " PY1 " = Part No.
- " YM " = Date Code Marking
- " Y " = Year
- " M " = Month
- Font type: Arial

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

SOT-23