Dual N-Channel Enhancement Mode MOSFET

Features

- High speed switch
- Built-in G-S Protection Diode
- Advanced trench cell design
- Typical ESD Protection HBM Class 2

Classification	Voltage Range(V)
OA	<125
OB	125 to <250
1A	250 to <500
1B	500 to <1000
1C	1000 to <2000
2	2000 to <4000
3A	4000 to <8000
3B	≥ 8000

Q1: 1. Source 2. Gate 6. Drain
Q2: 4. Source 5. Gate 3. Drain SOT-363 Plastic Package

Applications

- Portable appliances
- Load switch appliances

Absolute Maximum Ratings (at $\mathrm{T}_{\mathrm{a}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$ unless otherwise specified) (Q1/Q2)

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V_{DS}	60	V
Gate-Source Voltage	V_{GS}	± 20	V
Drain Current	I_{D}	220	mA
Peak Drain Current, Pulsed ${ }^{1)}$	I_{DM}	1	A
Total Power Dissipation ${ }^{2)}$	$\mathrm{P}_{\text {tot }}$	300	mW
Operating Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{j},}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Thermal Characteristics (Q1/Q2)

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Ambient ${ }^{2)}$	$R_{\text {өJA }}$	417	${ }^{\circ} \mathrm{C} / \mathrm{W}$

[^0]Characteristics at $\mathbf{T a}_{\mathbf{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise specified (Q1/Q2)

Parameter	Symbol	Min.	Typ.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at $\mathrm{ID}_{\mathrm{D}}=250 \mu \mathrm{~A}$	BV ${ }_{\text {Dss }}$	60	-	-	V
Drain-Source Leakage Current at $\mathrm{V}_{\mathrm{DS}}=48 \mathrm{~V}$	Idss	-	-	1	$\mu \mathrm{A}$
Gate Leakage Current at $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$	Igss	-	-	± 10	$\mu \mathrm{A}$
Gate-Source Threshold Voltage at $\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{Gs}}, \mathrm{ID}_{\mathrm{D}}=250 \mu \mathrm{~A}$	VGS(th)	0.8	-	1.5	V
$\begin{aligned} & \text { Drain-Source On-State Resistance } \\ & \text { at } \mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{D}=500 \mathrm{~mA} \\ & \text { at } \mathrm{V}_{G S}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mathrm{~mA} \\ & \text { at } \mathrm{V}_{G S}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA} \\ & \hline \end{aligned}$	$\mathrm{R}_{\text {ds(on) }}$		-	$\begin{array}{r} 1.44 \\ 2.25 \\ 4.05 \\ \hline \end{array}$	Ω
DYNAMIC PARAMETERS					
Input Capacitance at $\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {iss }}$	-	35	-	pF
Output Capacitance $\text { at } \mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	Coss	-	10	-	pF
Reverse Transfer Capacitance at $\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{Crss}^{\text {r }}$	-	8.5	-	pF
Gate charge total at $\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{G S}=10 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}$	Q_{g}	-	$\begin{gathered} 1.3 \\ 0.85 \\ \hline \end{gathered}$	-	nC
$\begin{aligned} & \text { Gate to Source Charge } \\ & \text { at } \mathrm{V}_{D S}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{G S}=4.5 \mathrm{~V} \end{aligned}$	$Q_{\text {gs }}$	-	0.45	-	nC
Gate to Drain Charge at $\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}$	$Q_{\text {gd }}$	-	0.3	-	nC
Turn-On Delay Time at $\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=25 \Omega$	$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	-	5.4	-	ns
Turn-On Rise Time at $\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}=500 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=25 \Omega$	tr_{r}	-	2.7	-	ns
Turn-Off Delay Time at $\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=25 \Omega$	$\mathrm{t}_{\text {(} \text { (off) }}$	-	5.8	-	ns
Turn-Off Fall Time at $\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{l}_{\mathrm{D}}=500 \mathrm{~mA}, \mathrm{R}_{\mathrm{G}}=25 \Omega$	t_{f}	-	30	-	ns
Body-Diode PARAMETERS					
Drain-Source Diode Forward Voltage at $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$, $\mathrm{Is}=500 \mathrm{~mA}$	V ${ }_{\text {sd }}$	-	-	1.3	V
Body-Diode Continuous Current	Is	-	-	220	mA

Electrical Characteristics Curves (Q1/Q2)

Fig. 1 Typical Output Characteristics

Fig. 3 On-Resistance vs. Drain Current

Fig. 5 On-Resistance vs. T_{j}

Fig. 2 Typical Transfer Characteristics

Fig. 4 On-Resistance vs. Gate-Source Voltage

Fig. 6 Typical Body-Diode Forward Characteristics

Electrical Characteristics Curves (Q1/Q2)

Fig. 7 Typical Junction Capacitance

Fig. $9 \mathrm{~V}_{(\mathrm{BR}) \mathrm{DSs}}$ vs. Junction Temperature

Fig. 8 Gate Charge

Fig. 10 Gate Threshold Variation vs. T_{j}

Test Circuits(Q1/Q2)

Fig.1-1 Switching times test circuit

Fig.2-1 Gate charge test circuit

Fig.1-2 Switching Waveform

Fig.2-2 Gate charge waveform

Unit	A	A1	B	C	D	E	e 1	HE	Lp	bp
mm	1.0	0.1	1.3	0.25	2.2	1.35	0.65	2.2	0.4	0.3
	0.9	0	typ.	0.1	1.8	1.15	typ.	2.0	0.15	0.1

Recommended Soldering Footprint

Packing information

Package	Tape Width (mm)	Pitch		Reel Size		Per Reel Packing Quantity
		mm	inch	mm	inch	
SOT-363	8	4 ± 0.1	0.157 ± 0.004	178	7	3,000

Marking information

" MR " = Part No.
" YM "= Date Code Marking
" Y " = Year
" M " = Month
Font type: Arial

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

[^0]: ${ }^{1)}$ Pulse Test: Pulse Width $\leq 100 \mu \mathrm{~s}$, Duty Cycle $\leq 2 \%$, Repetitive rating, pulse width limited by junction temperature $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}=150^{\circ} \mathrm{C}$.
 ${ }^{2}$) Device mounted on FR-4 substrate PC board, 2 oz copper, with minimum recommended pad layout.

