P-Channel Enhancement Mode MOSFET

Features

• Surface-mounted package

Drain
Drain
Gate
Source
Drain
Drain
Drain

Applications

- · Battery protection
- · Load switch
- Uninterruptible power supply

Absolute Maximum Ratings(at Ta = 25°C unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-Source Voltage	-V _{DS}	100	V
Gate-Source Voltage	V_{GS}	± 20	V
Continuous Drain Current	-I _D	1.6	Α
Pulsed Drain Current 1)	-I _{DM}	9	Α
Total Power Dissipation 2)	P _{tot}	1	W
Operating Junction and Storage Temperature Range	T _J , T _{stg}	- 55 to + 150	°C

Thermal Resistance Ratings

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Ambient 2)	R _{0JA}	125	°C/W

¹⁾ Pulse Test: Pulse Width ≤ 100 μs, Duty Cycle ≤ 2%,Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C.

²⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air.

MD10P380LS

Characteristics at Ta = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at -I _D = 250 μA	-V _{(BR)DSS}	100	-	-	V
Zero Gate Voltage Drain Current at -V _{DS} = 80 V	-I _{DSS}	-	-	1	μΑ
Gate-Source Leakage at V _{GS} = ± 20 V	I _{GSS}	-	-	± 100	nA
Gate-Source Threshold Voltage at $V_{DS} = V_{GS}$, $-I_D = 250 \mu A$	-V _{GS(th)}	1.2	-	2.3	V
Drain-Source On-State Resistance at -V _{GS} = 10 V, -I _D = 1 A at -V _{GS} = 4.5 V, -I _D = 0.5 A	R _{DS(on)}	- -	- -	325 380	mΩ
DYNAMIC PARAMETERS					
Gate resistance at $V_{DS} = 0 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	R_g	-	7.1	-	Ω
Forward Transconductance at $-V_{DS} = 5 V$, $-I_D = 1.6 A$	g fs	-	8	-	S
Input Capacitance at $V_{GS} = 0 \text{ V}$, $-V_{DS} = 50 \text{ V}$, $f = 1 \text{ MHz}$	Ciss	-	1046	-	pF
Output Capacitance at $V_{GS} = 0 \text{ V}$, $-V_{DS} = 50 \text{ V}$, $f = 1 \text{ MHz}$	Coss	-	29	-	pF
Reverse Transfer Capacitance at $V_{GS} = 0 \text{ V}$, $-V_{DS} = 50 \text{ V}$, $f = 1 \text{ MHz}$	Crss	-	25	-	pF
Total Gate Charge at -V _{GS} = 10 V, -V _{DS} = 50 V, -I _D = 1.6 A at -V _{GS} = 4.5 V, -V _{DS} = 50 V, -I _D = 1.6 A	Qg	- -	16 7	- -	nC
Gate to Source Charge at $-V_{GS} = 10 \text{ V}$, $-V_{DS} = 50 \text{ V}$, $-I_D = 1.6 \text{ A}$	Q _{gs}	-	4	-	nC
Gate to Drain Charge at $-V_{GS} = 10 \text{ V}$, $-V_{DS} = 50 \text{ V}$, $-I_D = 1.6 \text{ A}$	Q_{gd}	-	2	-	nC
Turn-On Delay Time at -V _{GS} = 10 V, -V _{DD} = 50 V, -I _D = 1.6 A, R_g = 3.3 Ω	t _{d(on)}	-	8	-	ns
Turn-On Rise Time at -V _{GS} = 10 V, -V _{DD} = 50 V, -I _D = 1.6 A, R _g = 3.3 Ω	t _r	-	4	-	ns
Turn-Off Delay Time at -V _{GS} = 10 V, -V _{DD} = 50 V, -I _D = 1.6 A, R _g = 3.3 Ω	$t_{d(off)}$	-	12	-	ns
Turn-Off Fall Time at -V _{GS} = 10 V, -V _{DD} = 50 V, -I _D = 1.6 A, R _g = 3.3 Ω	t _f	-	4	-	ns
Body-Diode PARAMETERS	<u> </u>				
Body Diode Voltage at -I _S = 1 A	-V _{SD}	-	-	1.2	V
Body-Diode Continuous Current	-Is	-	-	1.6	Α

Electrical Characteristics Curves

Fig. 1 Typical Output Characteristics

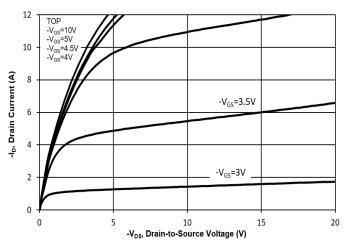


Fig. 2 Typical Transfer Characteristics

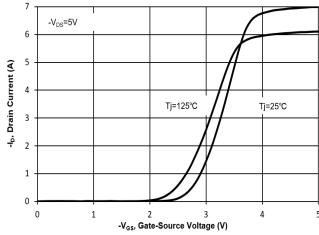


Fig. 3 On-Resistance vs. Drain Current

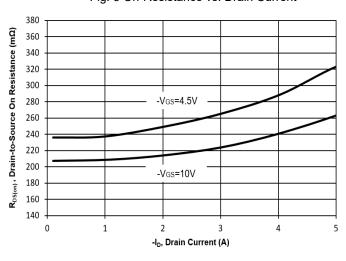


Fig. 4 On-Resistance vs. Gate-Source Voltage

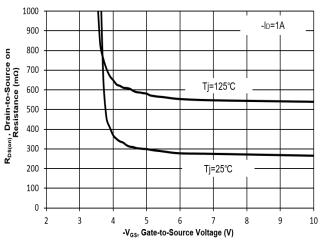


Fig. 5 On-Resistance $vs.T_j$

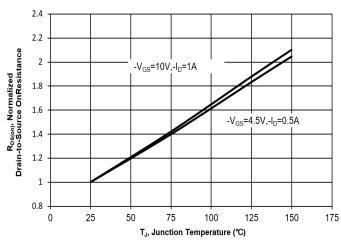
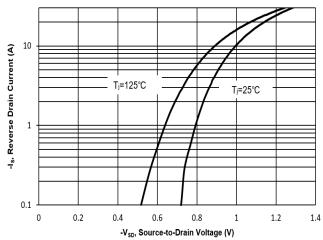
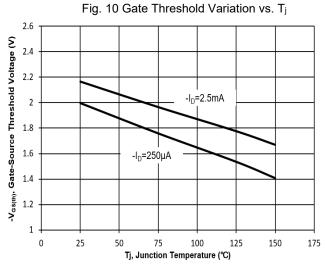
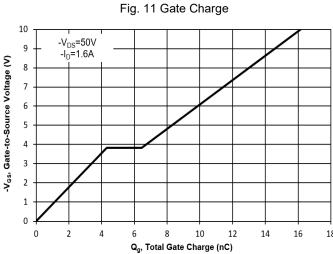



Fig. 6 Typical Body-Diode Forward Characteristics


Electrical Characteristics Curves


Fig. 7 Typical Junction Capacitance 10000 f=1MHz C_j, Junction Capacitance (pF) 1000 100 Coss Crss 10 1 0 20 60 80 100

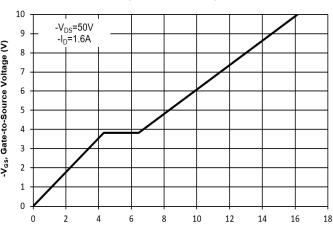
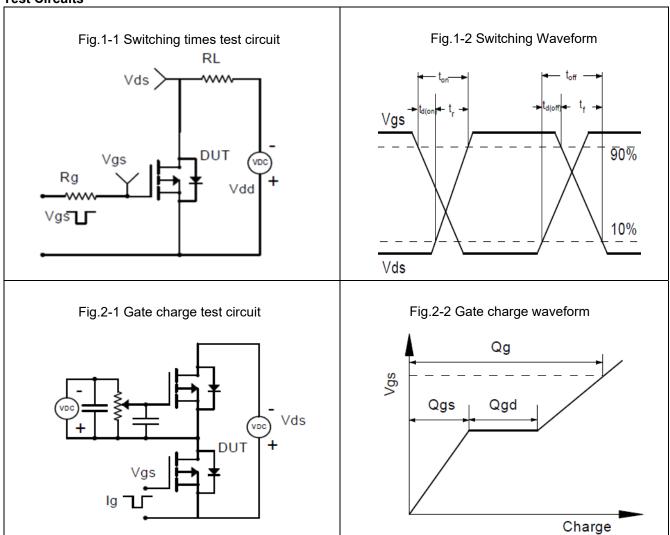
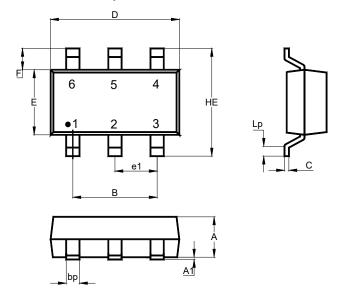
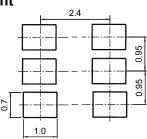

-V_{DS}, Drain-Source Voltage (V)

Fig. 8 Drain-Source Leakage Current vs. Ti 10 -l_{bss}, Drain-Source Leakage Current (µA) -V_{DS}=100V 0.1 0.01 0 25 50 75 100 125 150 175 T_J, Junction Temperature (℃)

Fig. 9 $V_{(BR)DSS}$ vs. Junction Temperature 1.12 -V_{Dss}, Normalized Drain-Source Breakdown Voltage -I_D=250µA 1.1 1.08 1.06 1.04 1.02 0.98 0 25 50 75 100 125 150 175 T_J , Junction Temperature (°C)




Test Circuits


Package Outline (Dimensions in mm)

SOT-26

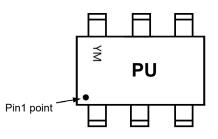
Unit	Α	A1	В	С	D	Ε	e1	F	HE	Lp	bp
	1.2	0.1	2.1	0.20	3.1	1.7	0.95	0.65	3.0	0.6	0.5
mm	1.0	0	1.7	0.08	2.7	1.3	typ.	0.6	2.6	0.2	0.3

Recommended Soldering Footprint

Packing information

Package	Tape Width	Pitch		Ree	el Size	Day Book Booking Quantity	
rackage	(mm)	mm	inch	mm	inch	Per Reel Packing Quantity	
SOT-26	8	4 ± 0.1	0.157 ± 0.004	178	7	3,000	

Marking information


" PU " = Part No.

"YM" = Date Code Marking

"Y" = Year

"M" = Month

Font type: Arial

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

