
N-Channel Enhancement Mode MOSFET

Features

- AEC-Q101 Qualified
- · Surface-mounted package
- Halogen and Antimony Free(HAF), RoHS compliant

1.Drain 2.Drain 3.Gate 4.Source 5.Drain 6.Drain SOT-26 Plastic package

Applications

- Portable appliances
- Battery management

Absolute Maximum Ratings (at Ta = 25°C unless otherwise specified)

	• ,		
Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	60	V
Gate-Source Voltage	V _{GS}	± 20	V
Continuous Drain Current	ID	3	Α
Drain Current - Pulsed 1)	I _{DM}	12	Α
Total Power Dissipation 2)	P _{tot}	2	W
Operating Junction and Storage Temperature Range	T_{j}, T_{stg}	- 55 to + 150	°C

Thermal Resistance Ratings

_	<u> </u>				
	Parameter	Symbol	Max.	Unit	
	Thermal Resistance from Junction to Ambient 2)	Reja	62.5	°C/W	

¹⁾ Pulse Test: Pulse Width ≤ 100 μ s, Duty Cycle ≤ 2%,Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C.

²⁾ Device mounted on FR-4 substrate PC board, 2oz copper, with 1-inch square copper plate in still air, $t \le 10 \text{ s}$.

MD06N090L-AH

Characteristics at Ta = 25°C unless otherwise specified

Parameter	Symbol	Min.	Тур.	Max.	Unit
STATIC PARAMETERS					
Drain-Source Breakdown Voltage at I _D = 250 μA	V _{(BR)DSS}	60	-	-	V
Drain-Source Leakage Current at V _{DS} = 48 V	I _{DSS}	-	-	1	μΑ
Gate-Source Leakage Current at V _{GS} = ± 16 V	I _{GSS}	-	-	± 100	nA
Gate-Source Threshold Voltage at V_{GS} = V_{DS} , I_D = 250 μA	V _{GS(th)}	1.2	-	2.5	٧
Drain-Source On-State Resistance at V_{GS} = 10 V, I_D = 2 A at V_{GS} = 4.5 V, I_D = 1 A	R _{DS(on)}	- -	-	80 90	mΩ
DYNAMIC PARAMETERS					
Forward Transconductance at $V_{DS} = 5 \text{ V}$, $I_D = 1 \text{ A}$	g FS	-	4.2	-	S
Gate Resistance at $V_{DS} = 0 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	Rg	-	1.4	-	Ω
Input Capacitance at V_{DS} = 30 V, V_{GS} = 0 V, f = 1 MHz	C _{iss}	-	445	-	pF
Output Capacitance at V_{DS} = 30 V, V_{GS} = 0 V, f = 1 MHz	Coss	-	22	-	pF
Reverse Transfer Capacitance at $V_{DS} = 30 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$	C _{rss}	-	18	-	pF
Gate Charge Total at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 2 A at V_{DS} = 30 V, V_{GS} = 4.5 V, I_D = 2 A	Q_g	-	8.6 4	-	nC
Gate to Source Charge at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 2 A	Q _{gs}	-	1.8	-	nC
Gate to Drain Charge at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 2 A	Q_{gd}	-	1.2	-	nC
Turn-On Delay Time at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 2 A, R_g = 4.7 Ω	t _{d(on)}	-	7	-	ns
Turn-On Rise Time at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 2 A, R_g = 4.7 Ω	t _r	-	2	-	ns
Turn-Off Delay Time at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 2 A, R_g = 4.7 Ω	$t_{d(off)}$	-	6	-	ns
Turn-Off Fall Time at V_{DS} = 30 V, V_{GS} = 10 V, I_D = 2 A, R_g = 4.7 Ω	t _f	-	5	-	ns
BODY DIODE PARAMETERS					
Drain-Source Diode Forward Voltage at Is = 1 A	V _{SD}	-	-	1.2	V
Body-Diode Continuous Current	ls	-	-	3	Α
Body Diode Reverse Recovery Time at I _S = 2 A, di/dt = 100 A / µs	t _{rr}	-	8	-	ns
Body Diode Reverse Recovery Charge at Is = 2 A, di/dt = 100 A / µs	Qrr	-	4	-	nC

Electrical Characteristics Curves

Fig. 2 Typical Transfer Characteristics Fig. 1 Typical Output Characteristics 22 14 TOP Tj=25°C V_{DS}=5V 20 V_{GS}=10V 12 V_{GS}=6V 18 V_{GS}=5V 16 V_{GS}=4.5V 10 Tj=125°C Drain Current (A) V_{GS}=4V Drain Current (A) 14 V_{GS}=3V 8 12 V_{GS}=2.5V 10 6 8 6 4 2 0 0 0 1 0 1 5 V_{GS}, Gate-Source Voltage (V) V_{DS}, Drain-to-Source Voltage (V) Fig. 3 On-Resistance vs. Drain Current Fig. 4 On-Resistance vs. Gate-Source Voltage 180 270 ID=2A $R_{ extsf{DS}(ext{on})}$, Drain-to-Source On Resistance (m Ω) 160 240 140 R_{DS(on)} , Drain-to-Source on Resistance (mΩ) 210 120 180 100 150 Vgs=4.5V Tj=125°C 80 120 60 90 V_Gs=10V 40 60 Tj=25°C 20 30 0 0 0 1 2 3 6 9 10 I_D, Drain Current (A) V_{GS}, Gate-to-Source Voltage (V) Fig. 5 On-Resistance vs.Ti Fig. 6 Typical Body-Diode Forward Characteristics 2.4 2.2 R_{DS(on)}, Normalized Drain-to-Source OnResistance Reverse Drain Current (A) 01 2 Vgs=10V,ID=2A 1.8 Tj=125°C 1.6 T_i=25°C Vgs=4.5V,lp=1A 1.4 1.2 1 0.8 25 75 100 125 150 175 1.2 0.2 0.4 0.6 0.8 0 1.4 1.6

V_{SD}, Source-to-Drain Voltage (V)

T_J, Junction Temperature (℃)

Electrical Characteristics Curves

Fig. 7 Typical Junction Capacitance

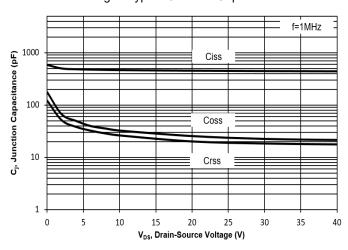


Fig. 8 Drain-Source Leakage Current vs. Tj

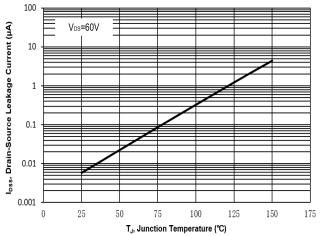


Fig. 9 $V_{(BR)DSS}$ vs. Junction Temperature

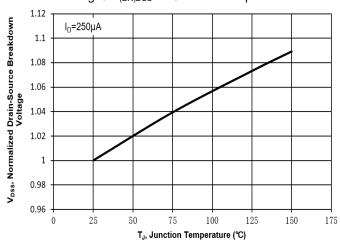


Fig. 10 Gate Threshold Variation vs. T_j

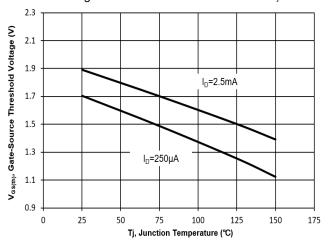
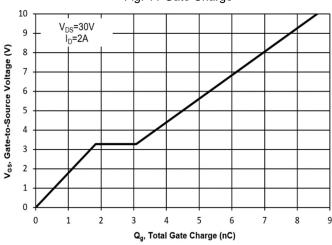



Fig. 11 Gate Charge

Test Circuits

Fig.1-1 Switching times test circuit

RL

Vds

Vdd

Vdd

VDC

Vgs

Vgs

Vgs

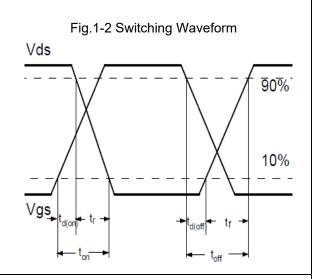


Fig.2-1 Gate charge test circuit

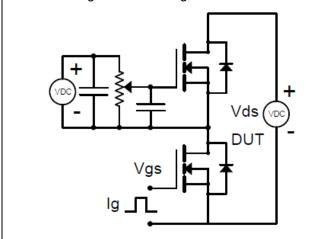
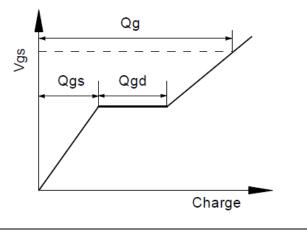
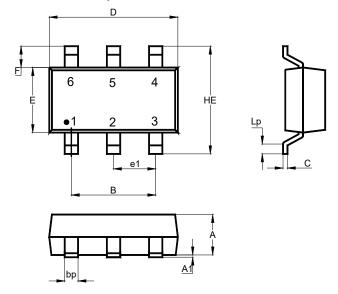
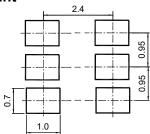




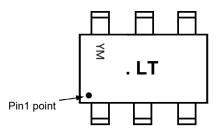
Fig.2-2 Gate charge waveform


Package Outline (Dimensions in mm)

SOT-26

Unit	Α	A1	В	С	D	Е	e1	F	HE	Lp	bp
	1.2	0.1	2.1	0.20	3.1	1.7	0.95	0.65	3.0	0.6	0.5
mm	1.0	0	1.7	0.08	2.7	1.3	typ.	0.6	2.6	0.2	0.3

Recommended Soldering Footprint


Packing information

Package	Tape Width	Pitch		Re	el Size	Per Reel Packing Quantity	
Fackage	(mm)	mm	inch	mm	inch	Fel Neel Facking Quantity	
SOT-26	8	4 ± 0.1	0.157 ± 0.004	178	7	3,000	

Marking information

- " LT " = Part No.
- "•" = HAF (Halogen and Antimony Free)
- " YM " = Date Code Marking
- " Y " = Year
- " M " = Month

Font type: Arial

Disclaimer: Our company reserve the right to make modifications, enhancements, improvements, corrections or other changes to improve product design, functions and reliability, anytime without notice. Semtech Electronics Limited makes no warranties, representations or warranties regarding the suitability of its products for any particular purpose, and does not accept any liability arising from the application or use of any product or circuit such as: Apply to medical, military, aircraft, space or life support equipment and expressly waive any and all liability, including but not limited to special, consequential or collateral damage.

