NPN Silicon Epitaxial Planar Transistor

As complementary types the PNP transistors 2N3905 and 2N3906 are recommended.

On special request, these transistors can be manufactured in different pin configurations.

1. Emitter 2. Base 3. Collecto TO-92 Plastic Package

Applications

- For switching and amplifier

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value	Unit
Collector Base Voltage	$\mathrm{V}_{\text {CBO }}$	60	V
Collector Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	40	V
Emitter Base Voltage	$\mathrm{V}_{\text {EBO }}$	6	V
Collector Current	I_{C}	200	mA
Total Power Dissipation	$\mathrm{P}_{\text {tot }}$	625	mW
Operating Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

Parameter	Symbol	Max.	Unit
Thermal Resistance from Junction to Ambient	$R_{\text {өJA }}$	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Characteristics at $\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter		Symbol	Min.	Max.	Unit
$\begin{aligned} & \text { DC Current Gain } \\ & \text { at } \mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA} \\ & \text { at } \mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \\ & \text { at } \mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} \\ & \text { at } \mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA} \\ & \text { at } \mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \text { 2N3903 } \\ & \text { 2N3904 } \\ & \text { 2N3903 } \\ & \text { 2N3904 } \\ & \text { 2N3903 } \\ & \text { 2N3904 } \\ & \text { 2N3903 } \\ & \text { 2N3904 } \\ & \text { 2N3903 } \\ & \text { 2N3904 } \end{aligned}$	$h_{\text {FE }}$ $h_{\text {FE }}$	$\begin{gathered} 20 \\ 40 \\ 35 \\ 70 \\ 50 \\ 100 \\ 30 \\ 60 \\ 15 \\ 30 \\ \hline \end{gathered}$	$\begin{aligned} & 150 \\ & 300 \end{aligned}$	
Collector Base Cutoff Current at $\mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}$		$\mathrm{I}_{\text {CBO }}$	-	50	nA
Emitter Base Cutoff Current at $V_{E B}=6 \mathrm{~V}$		$\mathrm{I}_{\text {Ebo }}$	-	50	nA
Collector Base Breakdown Voltage at $I_{C}=10 \mu \mathrm{~A}$		$V_{\text {(BR)cbo }}$	60	-	V
Collector Emitter Breakdown Voltage $\text { at } \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		$V_{\text {(BR)CEO }}$	40	-	V
Emitter Base Breakdown Voltage at $\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}$		$V_{\text {(BR)Ebo }}$	6	-	V
Collector Emitter Saturation Voltage at $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$ at $\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}$		$V_{\text {CE(sat) }}$	-	$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	V
Base Emitter Saturation Voltage at $\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$ at $\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}$		$V_{\text {bE(sat) }}$	-	$\begin{aligned} & 0.85 \\ & 0.95 \end{aligned}$	V
Gain Bandwidth Product at $V_{C E}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}$	$\begin{aligned} & \text { 2N3903 } \\ & \text { 2N3904 } \end{aligned}$	f_{T}	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	-	MHz
Collector Base Capacitance at $\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}, \mathrm{f}=100 \mathrm{KHz}$		$\mathrm{C}_{\text {ob }}$	-	4	pF
Delay Time $\text { at } \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=1 \mathrm{~mA}$		t_{d}	-	35	ns
Rise Time at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=1 \mathrm{~mA}$		t_{r}	-	35	ns
Storage Time at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=-\mathrm{I}_{\mathrm{B} 2}=1 \mathrm{~mA}$		$\mathrm{t}_{\text {s }}$	-	200	ns
Fall Time at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=-\mathrm{I}_{\mathrm{B} 2}=1 \mathrm{~mA}$		t_{f}	-	50	ns

Electrical Characteristics Curves

Fig. 1 Power Derating Curve

Fig. 3 Collector Curren vs. $V_{B E}$

Fig. 2 Output Characteristics Curve

Fig. $4 h_{\text {fe }}$ vs. Collector Current

Electrical Characteristics Curves

Fig. $5 \mathrm{~V}_{\mathrm{BE}(\text { sat })}$ vs. Collector Current

Fig. $6 \mathrm{~V}_{\mathrm{CE}(\text { sat })}$ vs. Collector Current

Fig 7. Output Capacitance

TO-92 Package Outline (Dimensions in millimeters)

TO-92 Ammo-Pack Outline (Dimensions in millimeters)

